

Sustainable Energy Strategy Irish Water

Charlie Coakley
Sustainability Policy Lead

EED Irish Study Visit

December 2020

National Utility - Embedding Sustainability

- Sustainability and Sustainable Development;
 - Key considerations of water resources and wastewater planning
 - Policies aligned with UN SDG's
- Irish Water Dedicated sustainability team
 - Developing and integrating sustainability as BAU
 - Aligned with Project Ireland 2040, Climate Action Plan, UN SDG's
- UN SDG's have set an ambitious framework
 - Water services has an individual goal within the SDG's
 SDG 6 clean water and sanitation

SDG6 – Clean Water and Sanitation

- Thematically, all SDG's are interconnected
- Irish Water's performance under SDG6
 - Influences national progress and development
 - Ultimately affecting individual wellbeing
- SDG 6 is pivotal to achieving other goals

Irish Water Assets

790 Water Treatment Plants 1.7bn litres of drinking water produced per day

c63,000km water mains

16

c26,000 TDS water sludge per annum

1,105 Waste Water Treatment Plants

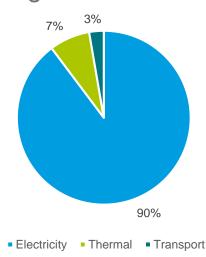
1.2bn litres of wastewater treated per day

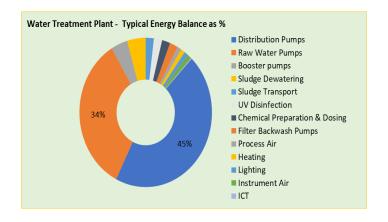
c25,000km wastewater network c58,000 TDS wastewater sludge per annum

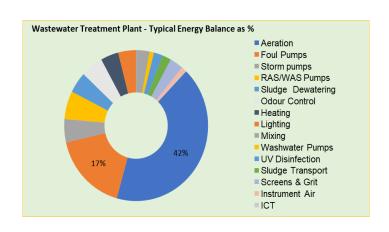
8037 electricity meters

1000GWh per annum

c21% of public sector use


210,000 tCO₂ per annum (not incl. process emissions)




Overview – Energy Consumption

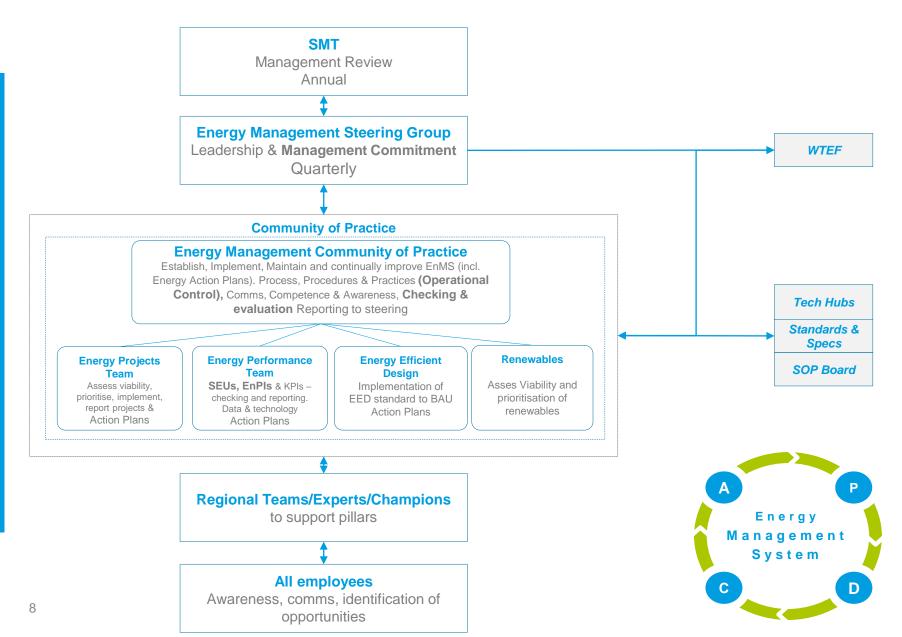
- Largest consumer of electricity in public sector c21%
- Electrical energy ~ 90% energy consumption
- Power over 200,000 homes for a year
- Annual spend ~€85m per year
- Majority of electricity used in:
 - Pumping Water
 - Aeration
 - Pumping waste water

Overview - Sustainable Energy Strategy

- Goal: Become an energy efficient, low carbon, sustainable water utility
- 36 business wide energy action plans to improve energy efficiency
- 255 energy projects 2020
 - Energy Efficient Design (EED) for all new and upgraded assets
 - Energy retrofit upgrades diffused aeration, pump replacement
 - Water conservation
 - Renewable energy PV, Anaerobic Digestion, wind
 - Lighting and Heating
 - Transport and Process Optimisation

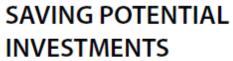
- SEAI Strategic Agreement Embedding EED as BAU
- ELENA European Funding support project pipeline
- On track to meet 33% target 50% energy efficiency by 2030
- 75,000 tonnes carbon avoided

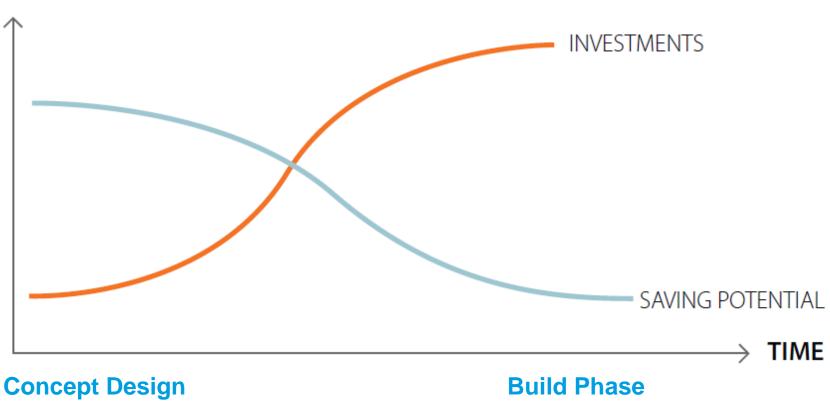
Strategy Structure



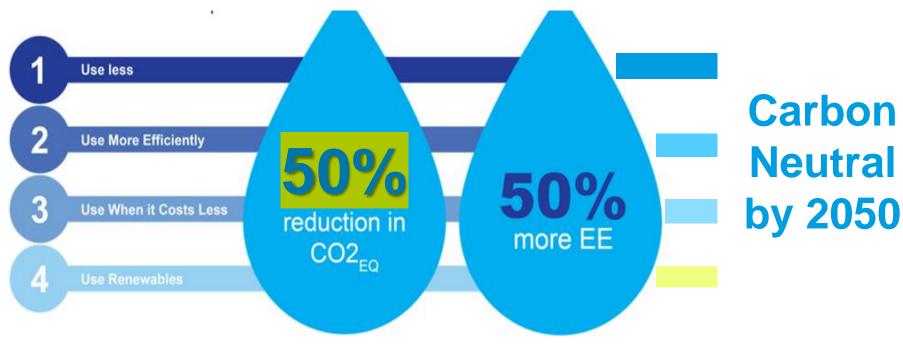
Target	Strategic Objectives	Strands	
Improve energy efficiency by 33%	Improve energy efficiency via the upgrading, replacement and optimisation of inefficient plant and processes	Energy Projects	
	Procuring energy efficient products and services and including energy performance evaluation criteria in relevant procurement tenders and contracts	New Projects	
	Design, build and operate assets to ensure energy efficiency and embedding the principles and practice of Energy Efficient Design		
	Encourage the utilisation of innovative techniques and technologies	Energy Innovation	
	Increasing our portfolio of renewables and integrating renewable energy opportunities where feasible	Renewable Energy	26 Engrav
	Reduce our demand for energy by reducing leaks	Water Conservation	36 Energy Action Plans
(New Target 50%)	Reduce our demand for energy by regulating discharges to our sewers	Source Control	
	Continually improving energy performance and energy management system		
	Communicate our energy performance to our staff and partners; Reporting on our energy performance, energy initiatives and savings made on an annual basis;	Communication Reporting and Performance	
	Developing and delivering appropriate training, communications and awareness in relation to energy management and developing a culture of energy efficient behaviour		

Energy Management Governance





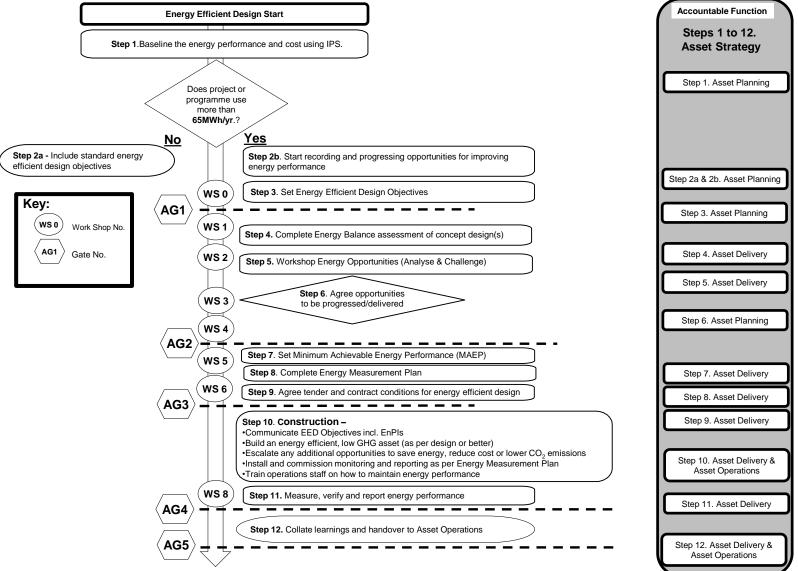
Why Energy Efficient Design



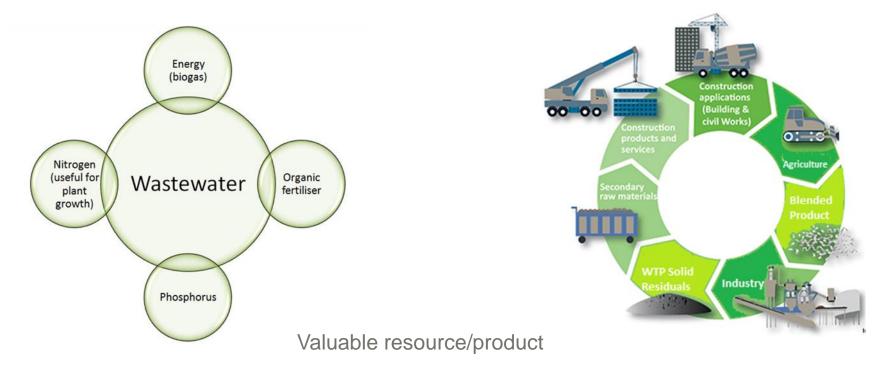
Scope

A design process for all Irish Water projects

Neutral


Programme for Government Our Shared Future

12 Step Energy Efficient Design Process



Sludge is not a Waste

Sustainable/Circular Economy model

Recovery/reuse – preferred long term sustainable option for Irish Water

Value of WwTP Sludge

Energy recovery

Biogas from anaerobic digestion used to generate heat and electricity Electricity produced used as renewable electricity source for wastewater treatment

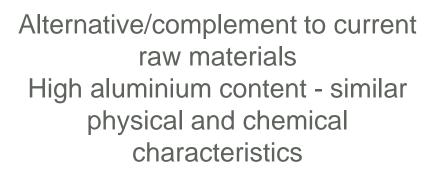
Fertiliser

Phosphorus and nitrogen content replacing artificial fertiliser needs

Carbon footprint

Energy recovery from sludge reduces overall carbon footprint of

wastewater treatment



Value of WTP Sludge

Cement Industry

Displace use of raw materials

Alum residual in clay brick manufacturing

Value of WTP Sludge

Integrated Constructed Wetland – ICW

Alum residual as a substrate
Nutrient reduction
Soil amendment & enhancement

Discharge to IW sewerage system

P removal, chemical saving

Development of long/short term storage

Provide ability to meet supply & demand

Low Carbon Nature Based Solutions

- We have developed a Biodiversity Action Plan (BAP) to help us to conserve, enhance and work with nature.
- This BAP identifies a range measures to be applied across our 7,000 sites to enhance native biodiversity, carbon sequestration and source protection.
- Sludge Drying Reed Beds (SDRB) at five pilot sites
- Integrated Constructed Wetlands

Energy Projects Pipeline

Sustainable FUTURE PROOFING

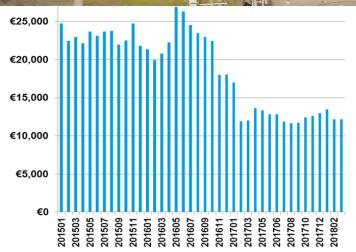
Solar Pilots - Informing larger programme pipeline

Nenagh WwTP

- 128 solar panels (220 square metres)
- 32,000 kWh (kilowatt hours) pa
- Saving 15 tonnes carbon

Newcastlewest WwTP

- 112 solar panels (180 square metres)
- 26,500 kWh (kilowatt hours) pa
- Saving 11.5 tonnes carbon


Purcellsinch WwTP

- Purcellsinch WWTP, Kilkenny City
- Replaced existing mechanical aeration system with Fine Bubble Diffused
 Aeration coupled to variable speed
 Air Blowers with accurate Oxygen Input Control
- Energy saving eq, 193 homes powered/year

Before	After
EPA Licence – Non- Compliance Issues	Plant in Compliance
High Energy Usage	48% Energy reduction - 965,000 kWhr per Annum (approx €144,750)
Maintenance Costs	Maintenance costs reduced >€50,000 per annum.
	Increased Plant headroom for future growth and major Investment deferred.

Killarney WwTP – Deep Tank Aeration

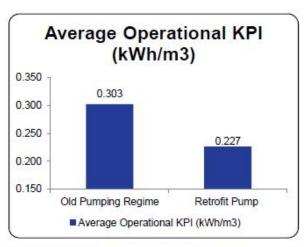
Original installation

- 62no Diffusers per Tank.
- High airflow per Diffuser.
- Poor oxygen transfer with the low density.
- High diffuser failure rate.
- High energy usage due to air flow requirements.

Aeration Upgrade

- 36no Fine Bubble Strip Diffusers per Tank.
- Low airflow (<30%) per Diffuser with high oxygen transfer.
- High Diffuser density with full distribution.
- Precise DO Control.
- Energy reduction of ~500kwh per day (€27,000 per annum)

Danganbeg WTP – High Lift Pump upgrade

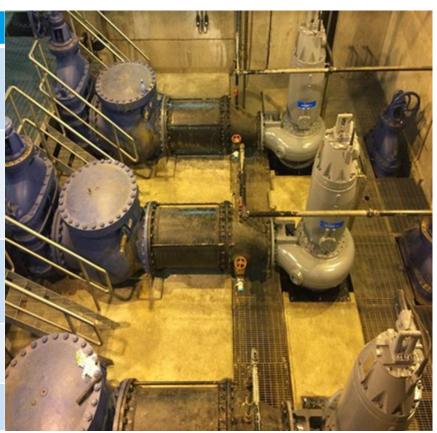


Scope of Works

- Retrofit 2xNo. 75 kW KSB Multitec (duty/standby)
- Control & Ancillary Works

Before	After	
Average operational hydraulic efficiency as tested = 60%	Average operational hydraulic efficiency as tested = 74%	
Annual kWh: 420,010	Annual kWh: 314,478	
Annual Cost: €63,002	Annual Cost: € 47,172	

Project Summary				
Annual Savings:	105,533 kWh & €15,830 (25 %)			
Capital Cost (Inc. VAT):	€80,186			
Simple Payback Period	5 Years			
Other Benefits	Control philosophy upgraded – Headloss reduction / variable flow & improved process control			



Pump Upgrade - West Pier PS

- West Pier PS Pumping waste water Dun Laoghaire to Ringsend WWTP
- Plant upgrade 3 x 170 KW pumps capable of pumping 700l/sec

Before	After
Existing pumps had a low overall efficiency at 47%	Retrofit pump hydraulic efficiency: 82 %
Annual electricity cost: €177,091	Annual Cost Savings: - €60,173 Annual kWh Savings: 440,156
Approx Maintenance Cost associated with blockages: €14,000 PA	Reduction in plant maintenance costs: €14,000
	Overall Plant Energy Reduction: 34 %
	Payback: 2.57 years

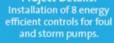
Energy Project Snapshots

Atlantic Pond Pumping Station

Newcastle West **WWTP**

Castletroy **WWTP Aeration** Upgrade

Tuam Regional Water Scheme



VERIFIED SAVINGS

VERIFIED SAVINGS

VERIFIED SAVINGS

Summary – Sustainable Energy Strategy

Energy Management

Success requires sustained effort throughout the organisation from senior management through to key decision makers and operations staff on the ground

Energy Efficient Design

Key component of the strategy as the assets we put in the ground now will be still operational post 2050 when the continent will be carbon neutral

Decarbonisation

Rethink of the way we do business as efficiency first through energy management, design of new assets with best in class technologies and a clear plan on decarbonising the energy sources through the use of renewables, low carbon solutions and energy procurement strategies.

Summary - Irish Water Sustainability

Water is one of the most essential substance on earth Critical for human health, production of food, industrial activity

 Provision of clean drinking water and a reliable wastewater service, in a manner that protects the natural environment, is critical to a country's economic and social development

We have made significant progress on our sustainability journey

• Irish Water as guardians of Ireland's water and wastewater assets, integrating and embedding sustainability and sustainable development

