

Sustainable Energy Strategy Irish Water

Charlie Coakley Sustainability Policy Lead

EED Irish Study Visit

December 2020

National Utility - Embedding Sustainability

- Sustainability and Sustainable Development;
 - Key considerations of water resources and wastewater planning
 - Policies aligned with UN SDG's
- Irish Water Dedicated sustainability team
 - Developing and integrating sustainability as BAU
 - Aligned with Project Ireland 2040, Climate Action Plan, UN SDG's
- UN SDG's have set an ambitious framework
 - Water services has an individual goal within the SDG's

SDG 6 clean water and sanitation

CLEAN WATER

SDG6 – Clean Water and Sanitation

- Thematically, all SDG's are interconnected
- Irish Water's performance under SDG6
 - Influences national progress and development
 - Ultimately affecting individual wellbeing
- SDG 6 is pivotal to achieving other goals

Irish Water Assets

Overview – Energy Consumption

- Largest consumer of electricity in public sector c21%
- Electrical energy ~ 90% energy consumption
- Power over 200,000 homes for a year
- Annual spend ~€85m per year
- Majority of electricity used in:
 - Pumping Water
 - Aeration
 - Pumping waste water

CLEAN WATER AND SANITATION

•

Overview - Sustainable Energy Strategy

- **Goal** : Become an energy efficient, low carbon, sustainable water utility
- 36 business wide energy action plans to improve energy efficiency
- 255 energy projects 2020
 - Energy Efficient Design (EED) for all new and upgraded assets
 - Energy retrofit upgrades diffused aeration, pump replacement
 - Water conservation
 - Renewable energy PV, Anaerobic Digestion, wind
 - Lighting and Heating
 - Transport and Process Optimisation
- SEAI Strategic Agreement Embedding EED as BAU
- ELENA European Funding support project pipeline
- On track to meet 33% target 50% energy efficiency by 2030
- 75,000 tonnes carbon avoided

Target	Strategic Objectives	Strands	
Improve energy efficiency by 33% (New Target 50%)	Improve energy efficiency via the upgrading, replacement and optimisation of inefficient plant and processes	Energy Projects	
	Procuring energy efficient products and services and including energy performance evaluation criteria in relevant procurement tenders and contracts	New Projects	
	Design, build and operate assets to ensure energy efficiency and embedding the principles and practice of Energy Efficient Design		
	Encourage the utilisation of innovative techniques and technologies	Energy Innovation	
	Increasing our portfolio of renewables and integrating renewable energy opportunities where feasible	Renewable Energy	26 Enorm
	Reduce our demand for energy by reducing leaks	Water Conservation	Action Plan
	Reduce our demand for energy by regulating discharges to our sewers	Source Control	
	Continually improving energy performance and energy management system		
	Communicate our energy performance to our staff and partners; Reporting on our energy performance, energy initiatives and savings made on an annual basis;	Communication Reporting and Performance	
	Developing and delivering appropriate training, communications and awareness in relation to energy management and developing a culture of energy efficient behaviour		

Energy Management Governance

opportunities

JISC

• A design process for all Irish Water projects

Programme for Government Our Shared Future

12 Step Energy Efficient Design Process

6 CLEAN WATER AND SANITATION

Sustainable/Circular Economy model

Recovery/reuse - preferred long term sustainable option for Irish Water

Value of WwTP Sludge

Energy recovery

Biogas from anaerobic digestion used to generate heat and electricity Electricity produced used as renewable electricity source for wastewater treatment

Fertiliser

Phosphorus and nitrogen content replacing artificial fertiliser needs

Carbon footprint

Energy recovery from sludge reduces overall carbon footprint of wastewater treatment

civil Works

Cement Industry

Displace use of raw materials

Alternative/complement to current raw materials High aluminium content - similar physical and chemical characteristics

Brick manufacturing

Alum residual in clay brick manufacturing

00

Integrated Constructed Wetland – ICW

Alum residual as a substrate Nutrient reduction Soil amendment & enhancement

Discharge to IW sewerage system

P removal, chemical saving

Development of long/short term storage

Provide ability to meet supply & demand

Low Carbon Nature Based Solutions

- We have developed a Biodiversity Action Plan (BAP) to help us to conserve, enhance and work with nature.
- This BAP identifies a range measures to be applied across our 7,000 sites to enhance native biodiversity, carbon sequestration and source protection.
- Sludge Drying Reed Beds (SDRB) at five pilot sites
- Integrated Constructed Wetlands

Sustainable FUTURE PROOFING

Solar Pilots - Informing larger programme pipeline

Nenagh WwTP

- 128 solar panels (220 square metres)
- 32,000 kWh (kilowatt hours) pa
- Saving 15 tonnes carbon

- 112 solar panels (180 square metres)
- 26,500 kWh (kilowatt hours) pa
- Saving 11.5 tonnes carbon

UISCE ÉIREAN N. : IRISH WATER

- Purcellsinch WWTP, Kilkenny City
- Replaced existing mechanical aeration system with Fine Bubble Diffused Aeration coupled to variable speed Air Blowers with accurate Oxygen Input Control
- Energy saving eq, 193 homes powered/year

Before	After	
EPA Licence – Non- Compliance Issues	Plant in Compliance	
High Energy Usage	48% Energy reduction - 965,000 kWhr per Annum (approx €144,750)	
Maintenance Costs	Maintenance costs reduced >€50,000 per annum.	
	Increased Plant headroom for future growth and major Investment deferred.	

Killarney WwTP – Deep Tank Aeration

Original installation

- 62no Diffusers per Tank.
- High airflow per Diffuser.
- Poor oxygen transfer with the low density.
- High diffuser failure rate.
- High energy usage due to air flow requirements.

Aeration Upgrade

- 36no Fine Bubble Strip Diffusers per Tank.
- Low airflow (<30%) per Diffuser with high oxygen transfer.
- High Diffuser density with full distribution.
- Precise DO Control.
- Energy reduction of ~500kwh per day (€27,000 per annum)

Danganbeg WTP – High Lift Pump upgrade

Scope of Works

- Retrofit 2xNo. 75 kW KSB Multitec (duty/standby)
- Control & Ancillary Works

Before	After	
Average operational hydraulic efficiency as tested = 60%	Average operational hydraulic efficiency as tested = 74%	
Annual kWh: 420,010	Annual kWh: 314,478	
Annual Cost: €63,002	Annual Cost: € 47,172	

Project Summary

Annual Savings:	105,533 kWh & €15,830 (25 %)	
Capital Cost (Inc. VAT):	€80,186	
Simple Payback Period	5 Years	
Other Benefits	Control philosophy upgraded – Headloss reduction / variable flow & improved process control	

- West Pier PS Pumping waste water Dun Laoghaire to Ringsend WWTP
- Plant upgrade 3 x 170 KW pumps capable of pumping 700l/sec

Before	After	48
Existing pumps had a low overall efficiency at 47%	Retrofit pump hydraulic efficiency: 82%	
Annual electricity cost: €177,091	Annual Cost Savings: - €60,173 Annual kWh Savings: 440,156	
Approx Maintenance Cost associated with blockages: €14,000 PA	Reduction in plant maintenance costs: €14,000	
	Overall Plant Energy Reduction: 34%	
	Payback: 2.57 years	

6 CLEAN WATER AND SANITATION **Energy Project Snapshots** Q

Atlantic Pond Pumping Station

Castletroy **WWTP** Aeration Upgrade

Tuam Regional Water Scheme

Project Details: Installation of 8 energy efficient controls for foul

VERIFIED SAVINGS

Project Details: Accelerated replacement of inefficient mechanical wastewater surface aerator with more efficient fine bubble diffused aeration system.

VERIFIED SAVINGS

Project Details: Upgrade of inefficient mechanical wastewater aeration system with new fine bubble-diffused aeration system. Project increased plant capacity from 28,000 PE to 35,000 PE.

VERIFIED SAVINGS

Project Details: Upgrade of high-lift pumps with two new pumps using existing 900 kW motors and variable speed drives.

VERIFIED SAVINGS

294tco₂/yr. **€78,400**/yr. **5** 0.61_{GWh/yr}. Terminal for one year

Energy Management

Success requires sustained effort throughout the organisation from senior management through to key decision makers and operations staff on the ground

Energy Efficient Design

Key component of the strategy as the assets we put in the ground now will be still operational post 2050 when the continent will be carbon neutral

Decarbonisation

Rethink of the way we do business as efficiency first through energy management, design of new assets with best in class technologies and a clear plan on decarbonising the energy sources through the use of renewables, low carbon solutions and energy procurement strategies.

Summary - Irish Water Sustainability

Water is one of the most essential substance on earth Critical for human health, production of food, industrial activity

 Provision of clean drinking water and a reliable wastewater service, in a manner that protects the natural environment, is critical to a country's economic and social development

We have made significant progress on our sustainability journey

• Irish Water as guardians of Ireland's water and wastewater assets, integrating and embedding sustainability and sustainable development

