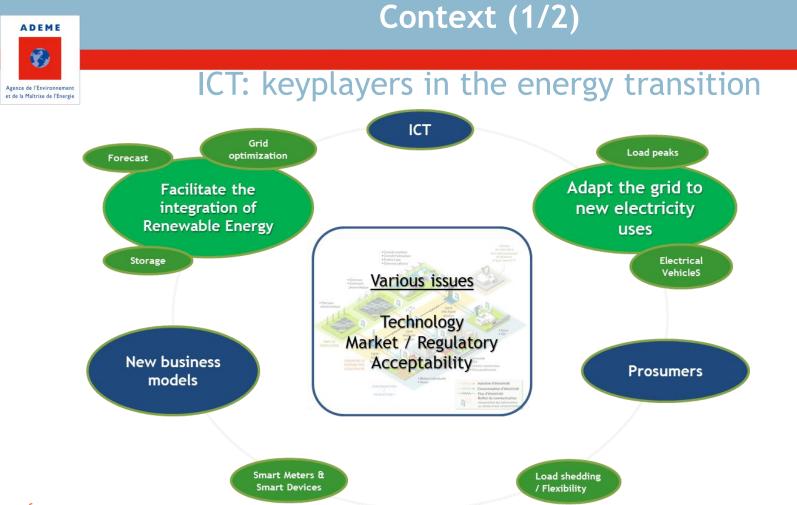
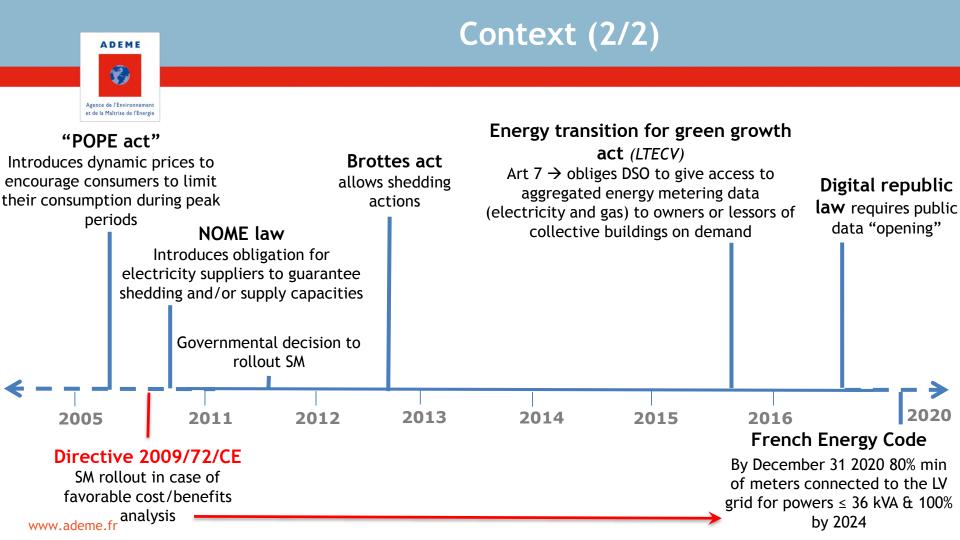
Smart grid and ICT impact issues Overview of the French situation


Marion BERTHOLON


Bucharest, October 18th 2018

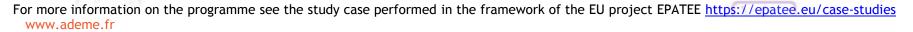
Context

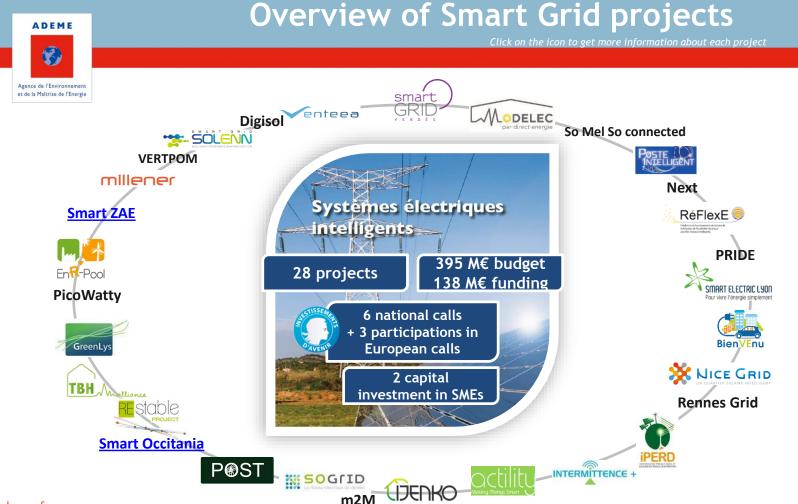
- Main lessons from demonstrators supported by ADEME
- Focus on demand management
- Environmental impact of ICT

- €57 billion investment programme launched by the French government in 2010 to support economic growth by investing in R&D and innovative projects, technological research institutes, technology transfer companies and clusters
- €3 billion led by ADEME over 2010-2017 to foster the emergence of innovative products/services in the field of energy and environment, and create and maintain jobs, by supporting financially their development and experimentation

€138M granted to smart grids

Control and manage energy demand


Favour the integration of renewable energy



Anticipate the evolution of existing electrical grids

Create new business models

First results of smart grids pilot projects

28 projets since 2009

- In October 2016 :
 - Publication of a report and a summary of the results of the 12 most mature projects at the end of 2015
- Documents available in the library on ADEME's website <u>http://www.ademe.fr/en/smart-grids-first-results-from-french-demonstrators</u>
- On 4 different topics :

Control and manage energy demand

Favour the integration of renewable energy

Smart Grids

First results

from French

demonstrators

ummary

XX

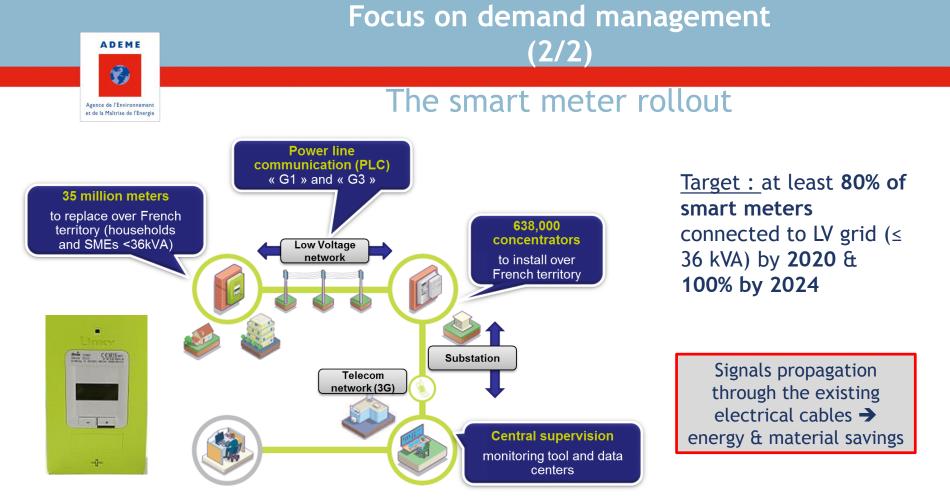
Anticipate the evolution of existing electrical grids

Create new business models

Focus on Energy Efficiency & DSM (1/2)

Information for consumers on their energy consumption

- Energy Savings (1% to 10% depending on the technical devices)
- Need to increase the « energy knowledge » of households



Support & advice

- Support and personalized advice to make behavior changes last
- Concept of power demand and grid constraints not known by the consumers (notably in the residential or tertiary sectors)

Demand side management in the residential sector :

- Load shedding potential about 1kW / household (beware of technical issues)
- Acceptability quite high among the customers
- Loading shedding operations are generally subject to few overrides (<5 %)</p>
- Should be linked with information on the consumers consumption in the management of their energy consumption
- Using the smart metering infrastructure as far as possible to limit the cost of the equipment

For more information on SM https://www.ademe.fr/particuliers-eco-citoyens/habitation/bien-gerer-habitat/compteurs-communicants-linky-gazpar www.ademe.fr

Environmental impact of ICT (1/7)

Description of the study supported by ADEME

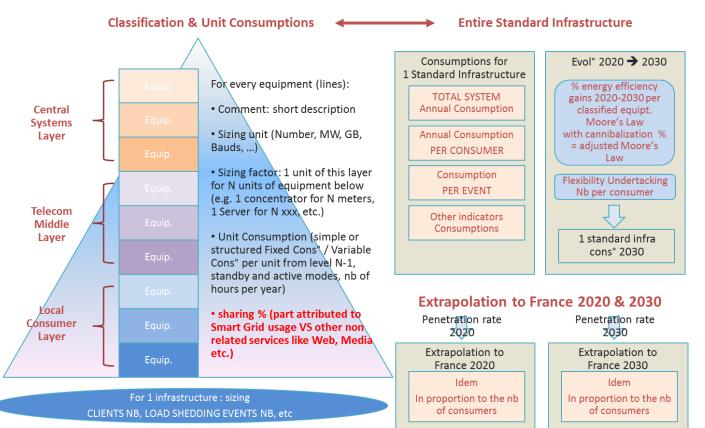
- 4 domains (SM, SH, SVEL & SRPD)
- Assessment of data flows & equipment volumes
- Evaluation of annual energy cons.

Method

- Interviews & workshops with keyplayers of the value chain
 Domains & use cases definition
- Modelling

Smart Home (SH)

Smart Public Distribution Grid (SRPD)


Smart Charging of Electric Vehicles (SVEL)

Environmental impact of ICT (2/7)

Agence de l'Environnement et de la Maîtrise de l'Energie

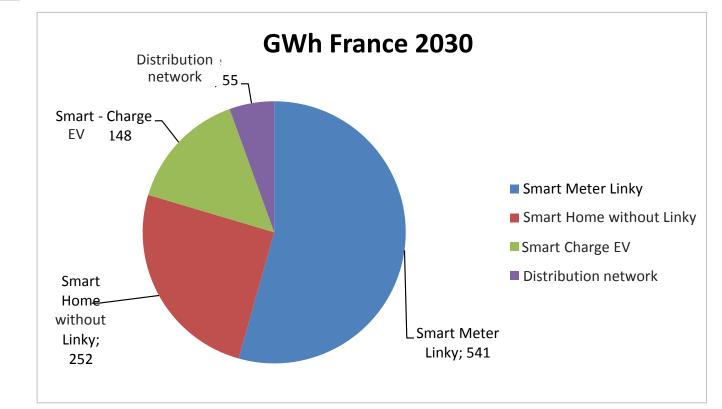
ADEME

Environmental impact of ICT (3/7)

Total electricity consumption

Unit	2020	2030
GWh	766	996
GWh	851	1535
GWh	992	3410
	GWh GWh	GWh 766 GWh 851

(1)Moore's Law states that ICT consumption is halved every N months (N depending on the kind of equipment)(2) With a cannibalization rate of 50%


(3) With a cannibalization rate of 75%

About 5% of the current electricity consumption for multimedia and computing equipment in France (around 20 TWh, source: 2014 forecast balance of the National Electricity Transport Grid, RTE)

Environmental impact of ICT (4/7)

Potential energy consumption distribution in 2030

Environmental impact of ICT (5/7)

Flexibility potentials in 2030

2030 consumptions (average scenario)	Total GWh for France	kWh per consumer	Wh per flex event & object
TOTAL Smart Grid ICT layer	996	33	
Linky Smart Meter	541	15	
Smart Home incl. Linky	496	31	9
Smart Home wo. Linky	252	16	4
EV Smart Charging	148	37	113
Distribution Grid	55	2	

Each EV charging point consumes energy continuously for its ICT

while it performs less than a full charge per day on average

• "Smart Grid Sphere" → 0.1 to 1 gross exabyte per year

Digital Sphere for the all sectors → about 100 exabyte per year (Mainly due to videos / Increasing trend due to including for domestic uses like security)

- → Smart Grids : 0.1% to 1% of the data created by the country
- Need to open the study to a whole cycle Life approach (not only electric consumption)
- Question the electronic device waste
- Have a quantify approach of the positive impacts of the Smart Grid ICT to calculate clearly energy and CO2 return time

Environmental impact of ICT (7/7)

Recommandations

- Prioritize reduction in consumption and equipment downsizing / Develop "communicating" boxes that **can modulate their activity and easily switch to idle mode**
- Ecodesign software/algorithms
- Develop **know-how in algorithms** that auto-adapt to locally available time, calculation and memory capacities
- Promote knowledge transfer in terms of ultra-low consumption from Energy Harvesting objects towards objects with batteries
- Encourage open standards, interoperable
- Benefit from the interest of households to security or health, to provide them energy efficient related services.
- Mutualize equipment, particularly for domestic uses.
- Motivate clients and operators to use their equipment as best as possible, not only for flexibility but also to generate energy savings

For more information on smart grids

The specific webpage of ADEME dealing with smart meters

https://www.ademe.fr/particuliers-eco-citoyens/habitation/bien-gerer-habitat/compteurscommunicants-linky-gazpar (in French)

The ADEME's point of view on smart meters

https://www.ademe.fr/compteurs-communicants-lelectricite-linky (in French)

Assessment of electricity cons. in the ICT layer from Cap Gemini for ADEME <u>https://www.ademe.fr/assessment-of-electricity-consumption-in-the-ict-layer-in-smart-grids</u> (synthesis available in English)

Smart Grids : First results from French demonstrators (Synthesis available in English) <u>https://www.ademe.fr/systemes-electriques-intelligents-premiers-resultats-demonstrateurs</u>

ADEME

Thank you for your attention

ADEME

Agence de l'Environnement et de la Maitrise de l'Energie Contact: marion.bertholon@ademe.fr

