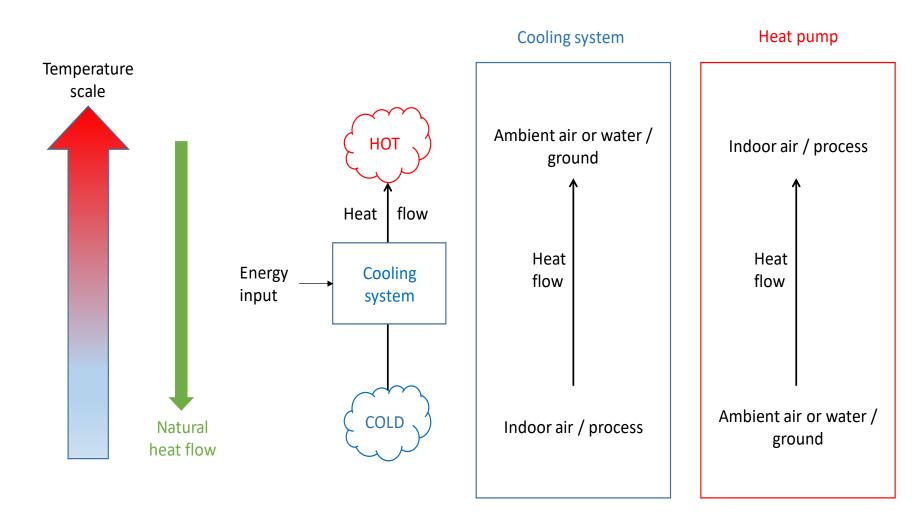


Renewable Cooling under the Revised Renewable Energy Directive

Study commissioned under ENER/C1/2018-493 by the European Commission (December 2019 – June 2021)

Lukas Kranzl, TU Wien Philippe Riviere, Armines

CA-RES - 10 October 2020


Content

- Context and overview of the study
 - Objectives of the study
 - Clarifying some system boundaries and relevant definitions of the study
 - Prospective cooling technologies
 - Content of the impact assessment
- Renewable cooling definition options

Overview – goals of the study in line with the ToR

- Quantify current final energy consumption for cooling (as well as its development until 2030 and 2050);
- ✓ Overview of technologies for cooling and related technological trends;
- Investigate how much various cooling technologies are able to deliver renewable cooling;
- ✓ Renewable cooling definitions in line with RED II and related RES-shares;
- \checkmark Deliver the equations with regard to the recommended methods;
- Impacts as well as benefits and costs of proposed definitions;
- Recommendations on how statistical reporting can be utilized for RES-C;
- Assure to be in line with the updated EPBD, implementing regulations of the Ecodesign and Energy Labelling Directives and the new F-gas Regulation
- Support implementing the RED II accomplishment of the EU 2030 goal (Article 3), quantification of the renewable energy shares (Article 7), the provisions regarding H&C (Article 23) as well as DHC (Article 24).

Cooling process

Cooling technologies

Sky radiative cooling

Single phase

Physical form of energy input	Basic working principles	Phase of the working fluid	Refrigerant/heat transfer medium	Specific physical process/device	Cooling technology Active/ Active Passive Passive	Sp Pro a
	Thermoelectric	Single phase	Solid	Peltier effect		
	Thermionic	Single phase	Solid	Thermionic emission		
Electrical	Thermotunnel (Thermotunneling)	Single phase	Solid	Thermionic emission (electrons do not move back		
	Electrocaloric	Single phase	Solid	to emission point due to a voltage difference) Electrocaloric effect		
	Electrochemical	Single phase	Gaseous	Electrochemical cell		
		Subcritical	Gaseous	Lorenz-Meutzner cycle (blends only)		
	Vapour compression	Transcritical	Gaseous	Transcritical cycle		
				Sanderson Rocker Arm Mechanism		
		Single phase	Gaseous	Turbo-Compressor-Condenser-Expander heat pump		
				Pulse tube		
				Ejector (jet pump)		
				lilsch vortex tube)		
Mechanical						
	No phase					
		technolog	itical flow cycle			
	Phase	marke	ane heat pump			
Acoustic	Thermoa	IIIaine				
Magnetic	Magnet		compression.	etocaloric effect		
				esiccant system		
	Dessicant	Phase change		Stand alone liquid desiccant system		
Chemical			Solid	Stand alone solid desiccant system		
	Chemical	Single phase	Solid/Liquid (e.g. sodium nitrate & H2O)	Heat of reaction		
Potential	Hydraulic	Single phase	Liquid	Potential energy use		
	Refrigerant and liquid sorbent	Phase change (refrigerant)	Liquid	Absorption cycle		
Thermal	Refrigerant and solid sorbent	Phase change (refrigerant)	Solid	Adsorption cycle		
	Thermal compression	Phase change	Gaseous	Transcritical thermal compression heat pump		
		-	Gaseous (e.g. cool air)			
	Sensible	Single phase –	Liquid (e.g. cool H2O)			
			Solid or Solid/Liquid (e.g. melting ice)			
Natural	Latent	Two-phase –	Liquid/Gaseous (vapour)	Evaporative cooling (water evaporation)		
	Sensible and latent	Single phase	Solid	Enthalpy recovery (heat exchanger)	•	

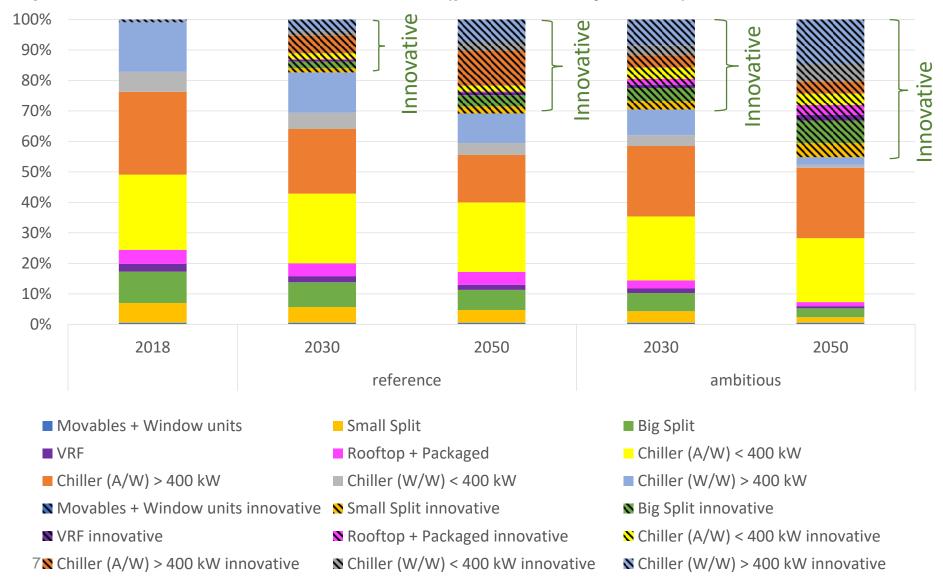
Solid

Heat emission at µm wave length

Space and/or Process Cooling application

PC SC/PC ۲ ۲ ۲

۲


> ۲

Classification dimensions of main cooling technology clusters

Dimension 1: Cooling type	Dimension 2: Energy Input	Dimension 3: Cold source (Heat sink)				
Moveables	Electricity (grid)	Air				
Small Split (<5kW)	Fuel (fossil)	Ambient water				
Big Split (>5kW)	Electricity (local renewable)	Ground				
Variable refrigerant flow systems	Fuel (renewable)	Aquifer				
Rooftop + Packaged	Renewable Heat	Waste cold				
Chiller <400 kW	Waste Heat					
Chiller >400 kW						
	Favourable, innovative cooling systems					

 Identification of 77 cooling technology clusters resulting from reasonable combinations of these dimensions

Market penetration of cooling technology clusters and possible evolution scenarios (preliminary data)

Cooling systems – Principles 1

- Passive cooling ⇒ Not in the scope of calculations (fourth sub-para Art.7(3))
 - Cooling can occur naturally without the intervention of a cooling device, using natural flow of energy from hot to cold
 - Includes actions aiming at reducing the cooling load not requiring an external energy input: such as stores, blinds, building insulation, green roofs, natural ventilation

• Active cooling: free cooling \Rightarrow In the scope of calculations

- Cooling systems using and/or facilitating the natural energy flow
- There is a cold source which has lower temperature than the space/process to be cooled.
- Only requiring (fans and) pumps to assist heat transportation.

Active cooling: cooling generator ⇒ In the scope of calculations

- When natural heat flow not available, not used or not sufficient
- Energy input, additional to heat transportation means, is required.

Cooling systems: Principles 2

Cooling systems' components:

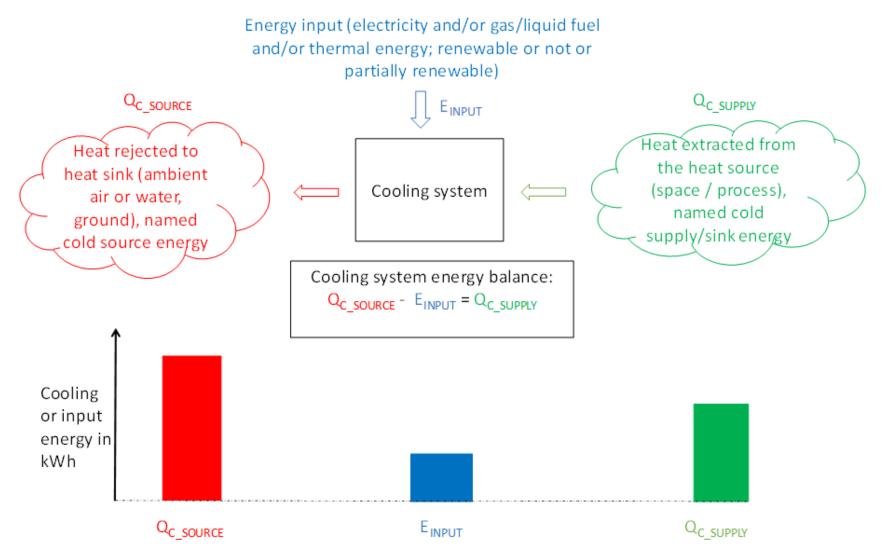
- A heat extraction system
- One or several **cooling devices**
- A heat rejection system

+ cooling medium through wich the heat transfer (extraction and rejection) operates ⇒ only needed in active cooling

+ heat sinks or cold sources: where the heat is rejected

Heat sinks which have lower temperature than the space or process to be cooled can be used in free or partial free cooling \Rightarrow *they are genuine cold sources.*

+ **cooling generator**: part of the cooling device in active cooling, which generates the cold


Remarks on the boundaries with waste heat

- Most cooling generators work as heat pump (HP). Heat pumps are heat transfer devices. They extract heat from a space or process (cooling) and transfer it to another space or process (heating).
- Cold is provided by the cold side of the heat pump \rightarrow (can be) used for cooling
- Heat is provided by the hot side of the heat pump \rightarrow (can be) used for heating
- →When **HP is used for heating** it **extracts heat from** the ambient air, surface and sewage water, i.e. **ambient energy** and ground, i.e. **geothermal energy** these are **renewable energy sources** see Art 2(1), (2), (3) of REDII
- →When HP is used for space cooling, it extracts heat from indoor air, which is not renewable, or a process and rejects it to outdoor/ambient air, water or ground, which are renewable and in this instance operates as heat sinks, which are cold sources. The rejected heat is waste heat. This waste heat could be further used as an energy input for a cooling or heat generator. This waste heat recovery is desirable because it reduces heat pollution and energy waste (increase energy efficiency).
- →While this **recovery of waste heat from cooling** is desirable, it does <u>not</u> transform the waste heat into renewable even if it is done by HP. However, such recovered heat, if mediated by district heating and cooling can count towards the Article 23, 24 targets see Art 2(9) of REDII.

Remarks on the boundaries with waste cold

- Waste cold is produced from industrial and service sector processes. A typical example is LNG terminals, where the liquid gas is evaporated and the evaporation extracts heat out from the environment.
- Such industrially generated cold can be used as a heat sink, similarly to natural heat sinks that are colder than the space/process to be cooled, such as surface water or ground, and are natural cold sources.
- Natural cold sources are renewable and covered by the definitions of ambient energy and geothermal energy under points 1, 2 and 3 of Article 2 of REDII.
- Waste cold does not qualifies as renewable energy and is covered under point 9 of Article 2 of REDII.
- However, waste cold as a cold source/heat sink can be counted towards the Article 23 and 24 targets, if a calculation method would be available/ agreed. Such calculation method is currently not a legal requirement but will be elaborated under the study.

Cooling systems: energy streams and balance

Cooling: Possible renewable elements

Cooling elements that could be considered renewable:

The presence of constantly low temperature cold source as heat sink

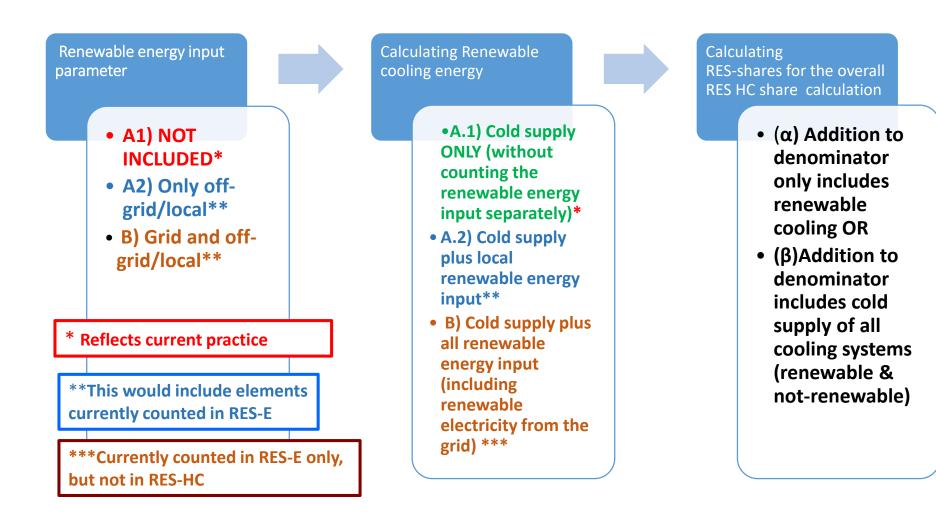
→eliminating or reducing the need for a cooling device/generator and enhancing the efficiency of the cooling process

High Seasonal Performance Factors

 \rightarrow often signalling the presence of a cold source sixth

Note! SPF is a mandatory element for reversible heat pumps (Art. 7(3) sixth sub-paragraph)

Renewable energy input (local) to the cooling generators


- → currently not included in the calculation of <u>renewable heating</u> from heat pumps ··· Shall we consider including it in <u>renewable cooling</u>?
- only <u>ambient heat (ambient heat energy</u> and <u>geothermal heat energy</u> since REDII), i.e. the <u>heat source</u> from which heat is extracted is counted in renewable heating;
- ---- such energy input for heating is counted in renewable electricity shares if this is the energy input;
- → if the energy input is renewable gas or heat for heat pumps used for heating, it is not counted in renewable shares either of electricity or heat → minor fraction of heat pumps currently on the market and gas driven heat pumps are no longer produced for the residential sector.

RES-C definitions (1): possible cooling systems in scope

The table includes <u>waste cold as cold source</u> and <u>waste heat as energy input</u> to the cooling device/generator. These are **not in the scope of renewable cooling** investigations, but in the scope of the counting of waste cold and waste heat as <u>eligible</u> under the flexibility in Article 23(2)(a), which allows these <u>to be counted towards the heating/cooling target and district heating/cooling targets</u>, but <u>not the overall RES target</u> under Article 3 of REDII.

Cold source	Energy input										
	Ele	ctricity	Gas/liq	uid fuel	Heat						
	Grid	Off grid photovoltaics	Grid / fossil	Local renewable	Renewable	Waste heat					
Ambient air	Vapour compression, membrane heat pump	Vapour compression, membrane heat pump	VapourVapourcompression,compression,ab(ad)sorption,ab(ad)sorption,		Ab(ad)sorption,	Ab(ad)sorption,					
Ambient water	Vapour compression, Free- cooling	Vapour compression	Vapour compression, ab(ad)sorption	Vapour compression, ab(ad)sorption	Ab(ad)sorption	Ab(ad)sorption					
Ground Vertical borehole and aquifers	Vapour compression, Free- cooling	Vapour compression	Vapour compression, ab(ad)sorption	Vapour compression, ab(ad)sorption	Ab(ad)sorption						
Waste cold	Vapour compression, Free- cooling	Vapour compression	Vapour compression, ab(ad)sorption	Vapour compression, ab(ad)sorption	Ab(ad)sorption	Ab(ad)sorption					

Options for renewable cooling definition

Exploratory options for RES-C: Case A1 and A2

Only low temperature cold supply is considered: A1

Example for solar absorption

- Low temperature cold supply + <u>local</u> renewable energy input are considered: A2
- Criteria based on cold source type AND/OR minimum SPF
 - SPF replaced by SPF_{RE(WH)} for local renewable energy input

$SPF_{RE} = \frac{E_{INPUT}}{E_{INPUT}} + E_{gas_{grid}} + \frac{E_{elec_{grid}}}{\eta}$											
SPF THRESHOLDS											
	Energy input										
	Ele	ectricity	Gas/liq	uid fuel	He	Heat					
Cold source	Grid	Off grid photovoltaics	Grid / fossil	Local renewable	Renewable	Waste heat					
Ambient air	SPF _{HIGH}	SPF _{HIGH}	SPF _{HIGH}	SPF _{HIGH}	SPF _{HIGH}	SPF _{HIGH}					
Ambient water	SPF _{HIGH}	SPF _{HIGH}	SPF _{HIGH}	SPF _{HIGH}	SPF _{HIGH}	SPF _{HIGH}					
Ground	SPF _{LOW}	SPF _{LOW}	SPF _{LOW}	SPF _{LOW}	SPF _{LOW}	SPF_{LOW}					
Waste cold	SPF _{LOW}	SPF _{LOW}	SPF _{LOW}	SPF _{LOW}	SPF _{LOW}	SPF _{LOW}					

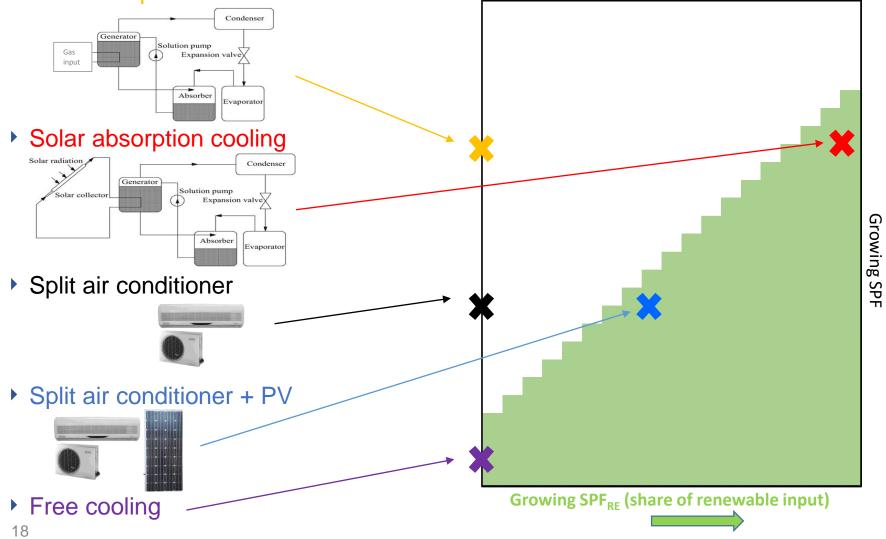
Qc Supply

- SPF_{HIGH} above best available technologies; SPF_{LOW} at Ecodesign MEPS levels
- SPF low and high values may be adjusted depending on source / sink combinations, metrics available by source type and boundary conditions

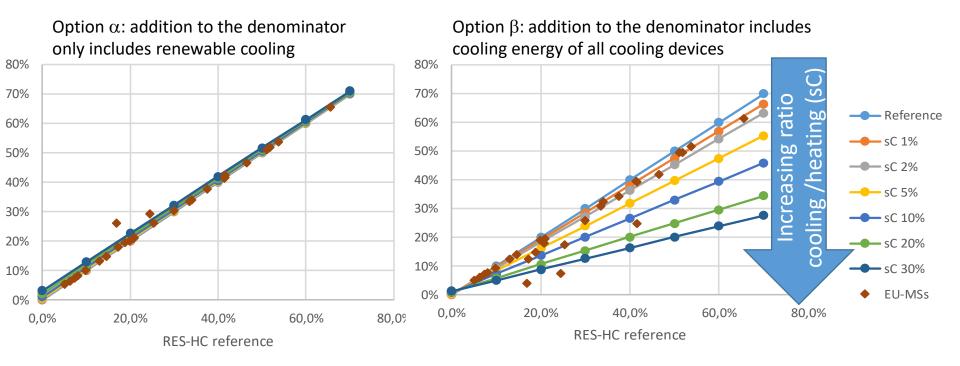
Options A1 and A2: impact of SPF_{RE}

- Impact of discounting E_{INPUT_RE} on SEER_{RE} illustrated for air conditioners
 - Complementary efforts in terms of energy efficiency and RES integration

		E _{INPUT_RE} / E _{INPUT}										
Future MEPS		0%	5%	10%	15%	20%	25%	30%	35%	40%	45%	50%
level		6	6.3	6.7	7.1	7.5	8.0	8.6	9.2	10.0	10.9	12.0
		6.5	6.8	7.2	7.6	8.1	8.7	9.3	10.0	10.8	11.8	13.0
		7	7.4	7.8	8.2	8.8	9.3	10.0	10.8	11.7	12.7	14.0
		7.5	7.9	8.3	8.8	9.4	10.0	10.7	11.5	12.5	10.9 12.0 11.8 13.0 12.7 14.0 13.6 15.0 14.5 16.0 15.5 17.0 16.4 18.0 17.3 19.0 18.2 20.0 19.1 21.0 20.9 23.0 21.8 24.0	15.0
Eutoma labal		8	8.4	8.9	9.4	10.0	10.7	11.4	12.3	13.3	14.5	16.0
Future label	_ ~	8.5	8.9	9.4	10.0	10.6	11.3	12.1	13.1	14.2	15.5	17.0
scale impact	CEER	9	9.5	10.0	10.6	11.3	12.0	12.9	13.8	15.0	16.4	18.0
	0	9.5	10.0	10.6	11.2	25.0	12.7	13.6	14.6	15.8	17.3	19.0
		10	10.5	11.1	11.8	12.5	13.3	14.3	15.4	16.7	18.2	12.0 3 13.0 7 14.0 5 15.0 5 16.0 5 17.0 4 18.0 3 19.0 2 20.0 1 21.0 2 23.0
		10.5	11.1	11.7	12.4	13.1	14.0	15.0	16.2	17.5	0 10.9 12.0 8 11.8 13.0 7 12.7 14.0 5 13.6 15.0 3 14.5 16.0 2 15.5 17.0 0 16.4 18.0 8 17.3 19.0 7 18.2 20.0 5 19.1 21.0 3 20.0 22.0 2 20.9 23.0 0 21.8 24.0	
		11	11.6	12.2	12.9	13.8	14.7	15.7	16.9	18.3	20.0	22.0
		11.5	12.1	12.8	13.5	14.4	15.3	16.4	17.7	19.2	20.9	23.0
•		12	12.6	13.3	14.1	15.0	16.0	17.1	18.5	20.0	21.8	24.0
High SPF threshold												

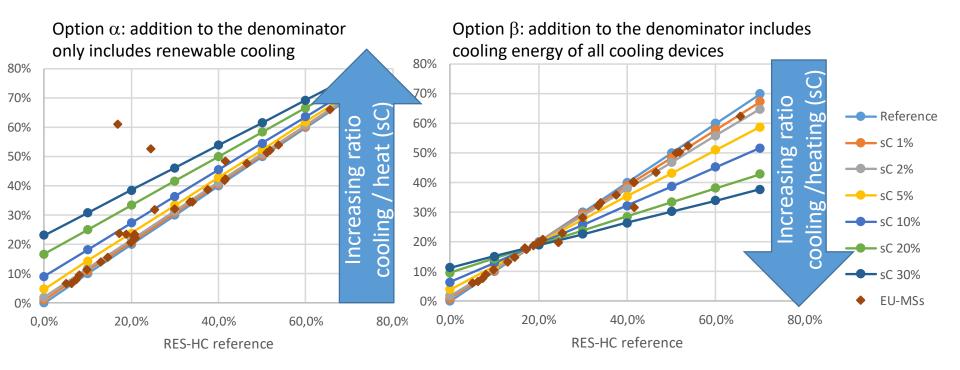

Options A1 and A2

Integration of RES in cooling, growing $\mbox{SEER}_{\rm RE}$


Note: absolute numbers are for illustration purpose only!

Options A1 and A2: SPF_{RE} of renewable cooling solutions

Gas absorption


Preliminary, indicative results on impact assessment, 2016, **high** constraints on renewable cooling generators Resulting RES-H&C share

- sC: Ratio between final energy consumption for cooling and final energy consumption for heating
- "high constraints": constraints are set in a way that 1% of current cooling generators are counted as renewable

Source: own calculations, based on SHARES-Tool

Preliminary, indicative results on impact assessment, 2016, **moderate** constraints on renewable cooling generators Resulting RES-H&C share

- sC: Ratio between final energy consumption for cooling and final energy consumption for heating
- "moderate constraints": constraints are set in a way that 10% of current cooling generators are counted as renewable

Outlook

- Assessing the impacts of various definition options
- Proposing final definition and calculation methodologies
- Guidance documents

Feedback is welcome!

Thanks!

