
Optimization of energy performance investments of buildings

Tuomo Niemelä, D.Sc. (Tech.) Technology Director, Energy Department Granlund Oy

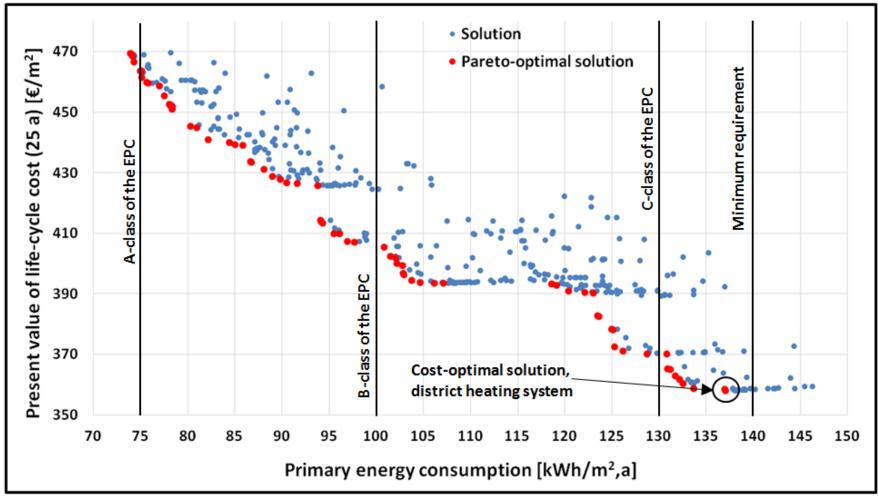
Optimization: searching for the best possible solution from a large number of different options



Need for optimization

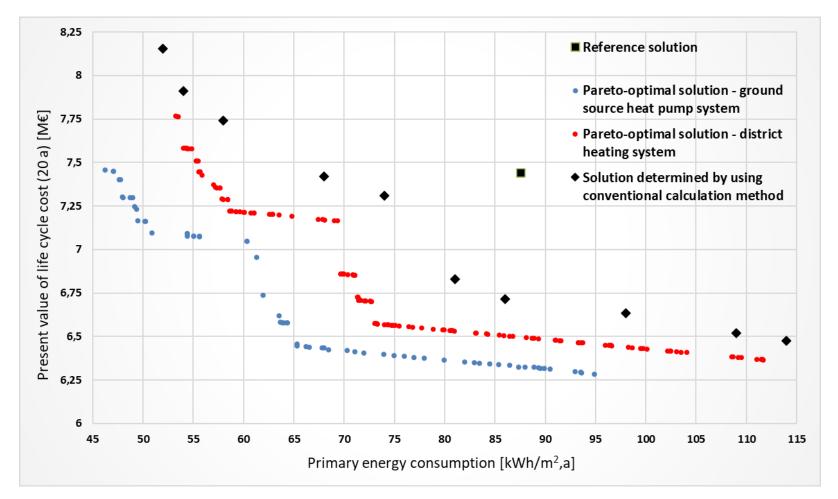
- Cost-effectiveness and energy performance objectives
 - Cost-optimal nearly zero-energy buildings (nZEBs)
 - Cost-effective renovation of buildings
 - How to achieve as high energy performance as possible with the lowest investment costs possible
- Conventional calculation methods comparing a few potential energy performance improvement measures are not sufficient to determine the optimal solutions
- Simulation-based multi-objective optimization is a superior and cost-effective method to determine the best solutions
- Multi-objective optimization is most effective in the early stage (project planning phase) of projects

Optimized measures in buildings

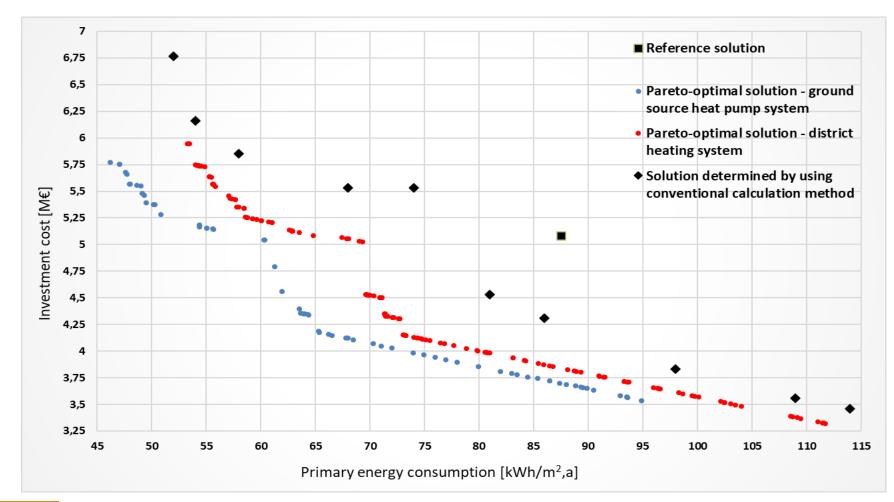


Granlund

22 More and more Information and **Building** Technology



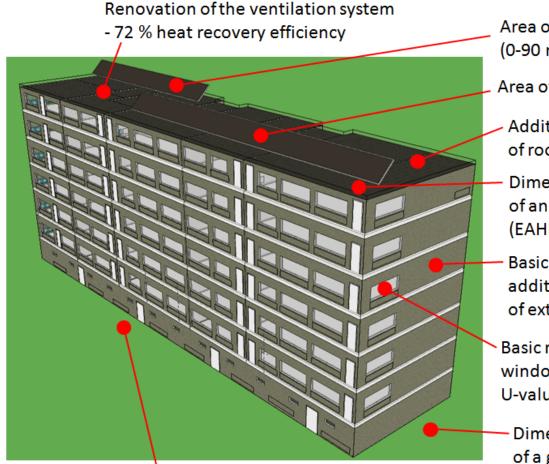
The principle of multi-objective optimization



Optimized vs conventional

Optimized vs conventional

Renovation case: Typical Finnish 1960s Apartment Buildings


Case study:

Typical Finnish 1960s Apartment Buildings

- Target: To determine the cost-optimal energy performance renovation solutions using MOBO (Multi Objective Building Performance Optimization, tool developed by Finnish research institution VTT and Aalto University)
- Extremely time-consuming and difficult to carry out by using conventional research methods
- Energy and condition simulation-based optimization analysis method is applied
- Mathematical algorithm defines the optimal solutions according to the definitions and constraints set by the user

Studied renovation measures

Area of solar thermal collectors (0-90 m²)

Area of PV-panels (0-170 m²)

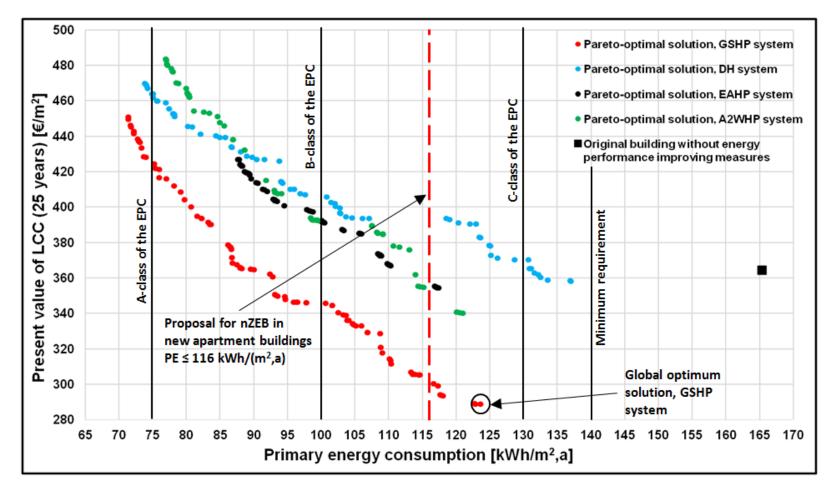
- Additional thermal insulation of roof (0-500 mm)
- Dimensioning power output of an exhaust air heat pump (EAHP) system (30-40 kW)
- Basic refurbishment or additional thermal insulation of external walls (0-200 mm)
- Basic refurbishment of original windows or new windows with U-value of 1.0 or 0.8 W/(m²K)
 - Dimensioning power output of a ground source heat pump (GSHP) system (39-156 kW)

Building on Innovation

Dimensioning power output of an air-to-water heat pump (A2WHP) system (14-128 kW)

District heating system optimization

- When the district heating system is used as the main heating system, optimized variables are:
 - Area of solar collectors (0-90 m²)
 - Area of PV-panels (0-170 m²)
 - Renovation of the ventilation system (→ current mechanical exhaust air ventilation system is replaced with a mechanical supply and exhaust air ventilation system with heat recovery unit (72 % efficiency))
 - Additional thermal insulation thickness of external walls (0-200 mm), or just the basic refurbishment
 - Additional thermal insulation thickness of roof (0-500 mm)
 - Replacement of windows (original windows are repaired and re-sealed, or new windows are installed with the U-value of 1.0 W/(m²K) or 0.8 W/(m²K))



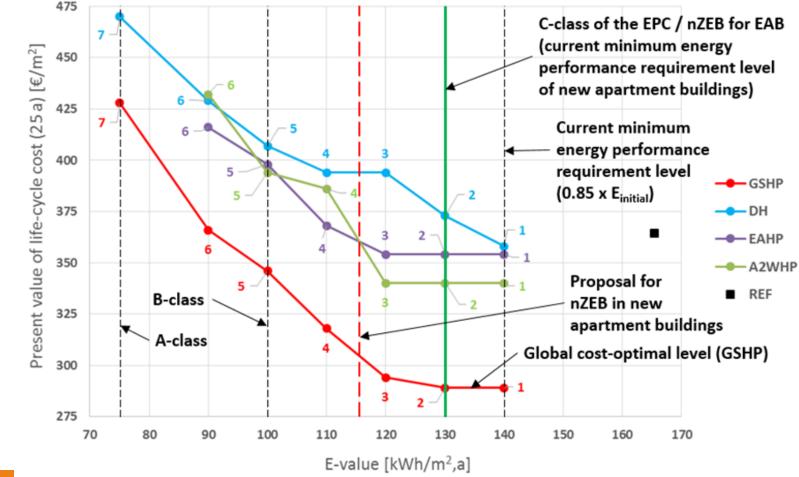
Ground source heat pump system optimization

- When the GSHP system is used as the main heating system, optimized variables are:
 - Dimensioning power output of the heat pump system (39-156 kW)
 - Area of PV-panels (0-170 m²) ۲
 - Renovation of the ventilation system
 - Additional thermal insulation thickness of external walls (0-200 mm), or just the basic refurbishment
 - Additional thermal insulation thickness of roof (0-500 mm)
 - Replacement of windows (original windows are repaired and re-sealed, or new windows are installed with the U-value of 1.0 W/($m^{2}K$) or 0.8 W/($m^{2}K$))

Optimal solutions in the 1960s apartment buildings

Recommended renovation solutions for the building

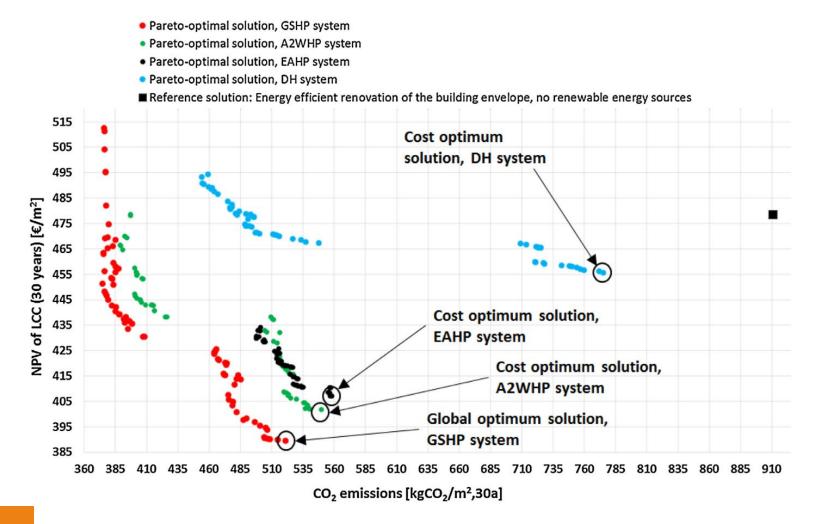
Energy class of the EPC, primary energy consumption [kWh/m ² ,a]	Main heating system	Power output of the heat pump system [kW]	Area of PV- panels [m ²]	Thickness of additional thermal insulation of external walls [mm]	Thickness of additional thermal insulation of roof [mm]	Windows, U-value [W/m ² K]	Renovation of the ventilation system	NVP of LCC [€/m²]	IC [€/m²]
140 (minimum requirement)	GSHP	94	170	0	+250	2.5 (original)	No	289	150
130 (C-class)	GSHP	94	170	0	+250	2.5 (original)	No	289	150
120	GSHP	130	160	0	+400	2.5 (original)	No	294	161
110	GSHP	150	170	0	+350	1.0 (new)	No	318	199
100 (B-class)	GSHP	70	160	0	+150	2.5 (original)	Yes	346	251
90	GSHP	73	170	0	+250	1.0 (new)	Yes	366	288
75 (A-class)	GSHP	70	170	+150	+350	1.0 (new)	Yes	428	383



Recommended renovation solutions for the district heating system

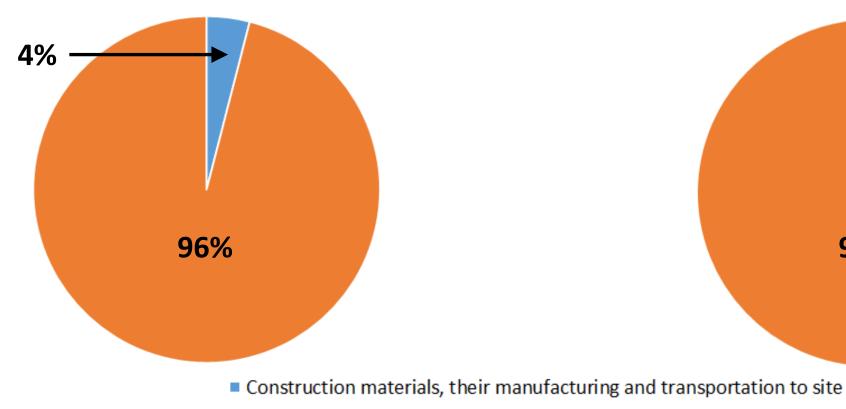
Energy performance target level, E- value [kWh/m ² ,a]	Main heating system	Area of PV- panels [m ²]	Thickness of additional thermal insulation of external walls [mm]	Thickness of additional thermal insulation of roof [mm]	Windows, U-value [W/m ² K]	Area of solar collectors [m ²]	Renovation of the ventilation system	NVP of LCC [€/m²]	IC [€/m²]
140 (minimum requirement)	DH	170	0	+300	2.5 (original)	34	No	358	150
130 (C-class)	DH	170	0	+300	1.0 (new)	66	No	373	150
120	DH	170	0	+300	2.5 (original)	34	Yes	394	161
110	DH	170	0	+300	2.5 (original)	40	Yes	394	199
100 (B-class)	DH	160	0	+350	1.0 (new)	60	Yes	407	251
90	DH	170	+100	+250	2.5 (original)	56	Yes	429	288
75 (A-class)	DH	170	+200	+450	1.0 (new)	90	Yes	470	383

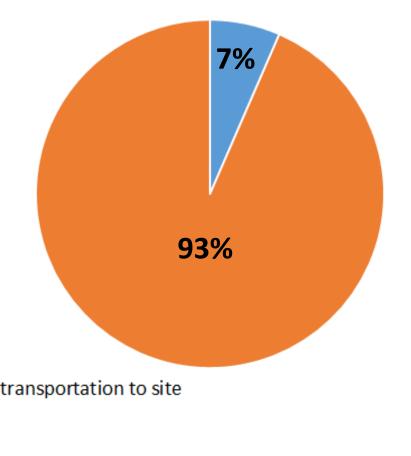
A recommendation of a reasonable and cost-effective nZEB energy performance target level for existing Finnish apartment buildings


25.3.2021

Renovation case: Typical Finnish 1970s Apartment Buildings

Optimizing the cost-effectiveness and environmental impact of deep renovations


Optimal solutions in the 1970s apartment buildings


Optimal solutions in the 1970s apartment buildings

The breakdown of CO₂ emissions (30 a) of the reference solution

Delivered energy consumption

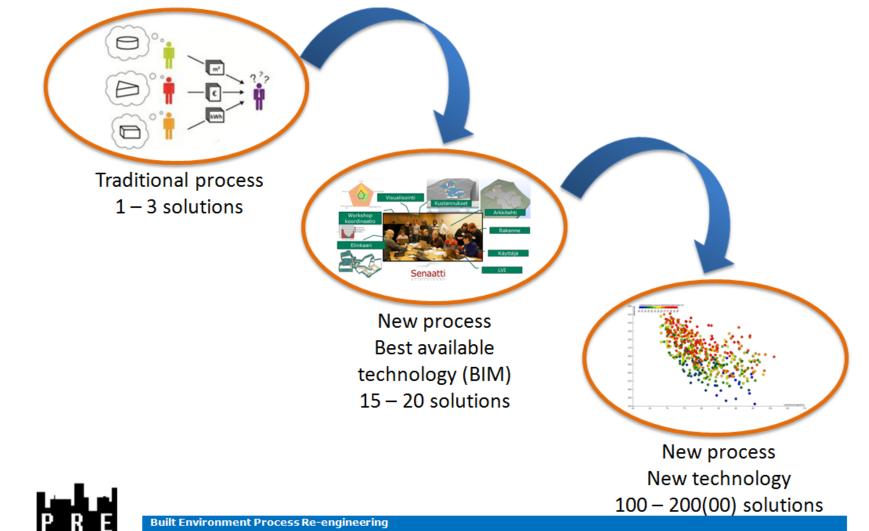
The breakdown of CO₂ emissions (30 a) of the global optimum solution

25.3.2021

Suitable applications for multi-objective optimization of energy performance of buildings

Applications for optimization of energy performance investments of buildings

- New buildings \rightarrow how to build cost-optimal nZEBs
- All renovation cases → determining various renovation concepts: 1970's apartment buildings, 1980's ABs, etc.
- Concept development of new and existing buildings \rightarrow how to build and renovate
- Excellent tool in life-cycle projects to determine the targets of the project



Energy performance optimization and costeffectiveness

- Maximization of return on investment (ROI)
- Minimization of investment costs in projects
- How to determine the best possible overall solution with a limited investment budget, e.g. 300 000 €?
- Can be used to carry out various sensitivity analyzes, e.g.
 - the effect of the selected interest rate and energy price escalation used in the economic calculations
 - the tolerances in the initial calculation data used in the optimization analysis, such as the investment cost of the GSHP system, etc.

MoNo process and technology leap

Thank you!

Tuomo Niemelä, D.Sc. (Tech.)

Technology Director, Energy Department Granlund Oy tuomo.niemela@granlund.fi Tel. +358 40 662 1274

