

Liberté Égalité Fraternité

Consumption reference values per data center type

Calculation proposal for decree n° 2019-771 of 23 July 2019

Decree so called « tertiary sector »

For all tertiary buildings with total area ≥ 1 000 m²

1

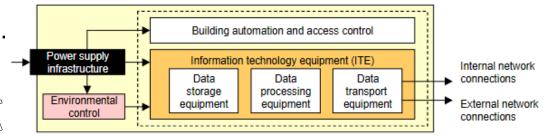
Reduction of final energy consumption in respect to a reference year not before 2010

- - 40 % in 2030
- - 50 % in 2040
- - 60 % in 2050

2

Consumption lower than a maximum target value in 2030

- Expressed in kWh/m²/year
- Fixed depending on the activity
- Considering use intensity change

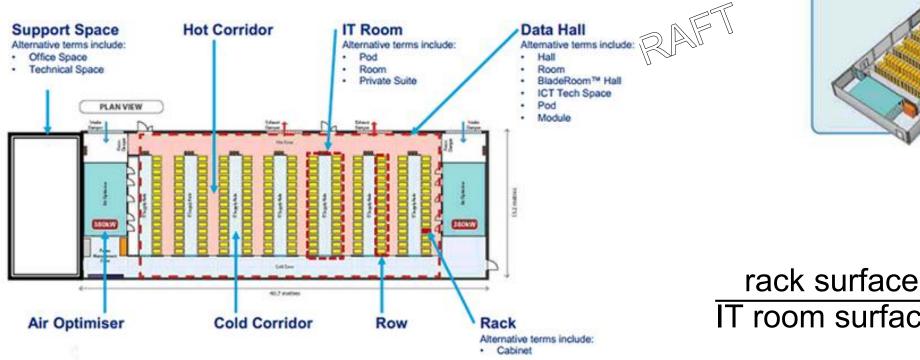


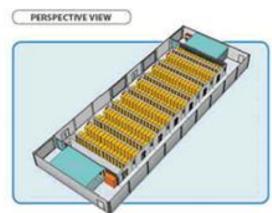
Data centres consumption

IT consumptions: servers, routers, switches, storage ...

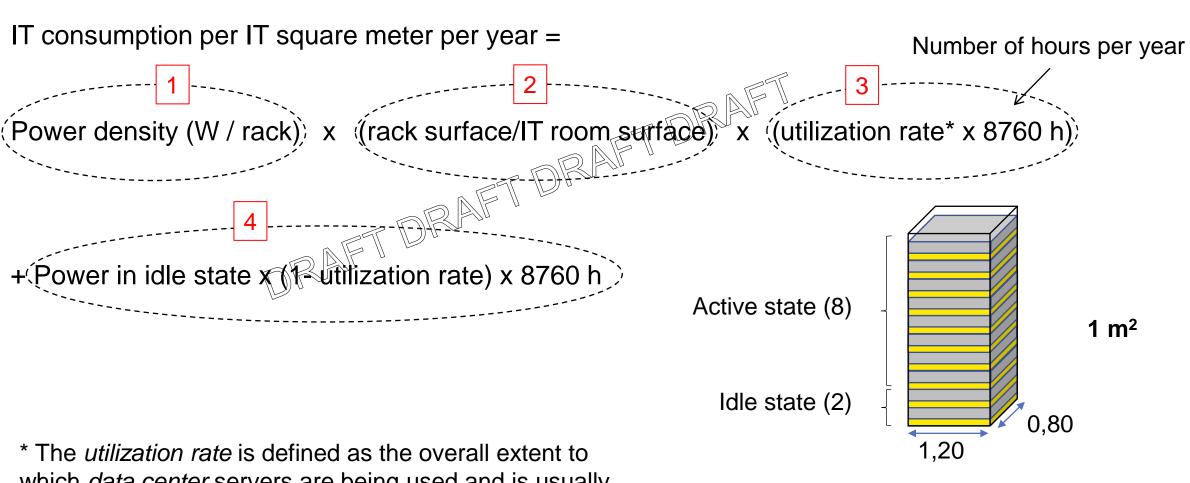
Non IT consumption: cooling, UPS, lighting...

The functional elements of the data centre


DC consumption # T equipment consumption + non IT equipment consumption


energy used as a whole
P.U.E.=
energy used by just the IT equipment

Data centre design


 $\frac{\text{rack surface}}{\text{IT room surface}} = 1/3$

New South Wales Government, Australia

IT consumption maximum allowed

* The *utilization rate* is defined as the overall extent to which *data center* servers are being used and is usually recorded as a percentage.

Typical rack with 10 servers

Overall consumption maximum allowed

Overall consumption per IT square meter

Reference values in 2030

		1	3	5	4	2
Categories	IT area	IT power density or nominal power (W/rack)	Utilization rate	PUE	Idle power*	rack surface/IT room surface
Server closet	< 20 m²	4000	50%	2	80	1/3
Server room	20 m ² to 100 m ²	3000	40%	1,8	80	1/3
Mini scale data centre	100 m² to 500 m²	3500	40%	1,7	80	1/3
Small scale data centre	500 m² to 1000 m²	4000	40%	1,6	80	1/3
Medium scale data centre	1000 m² to 5000 m²	4500	50%	1,5	80	1/3
Large scale data centre	$5000\ m^2$ to $10\ 000\ m^2$	5000	50%	1,4	80	1/3
Hyperscale data centre	> 10 000 m ²	10000	60%	1,2	80	1/3

^{*} Regulation 2019/424, table 3: Base idle state power allowance for Blade or multi-node servers (2 servers in idle mode per rack of 10 servers)

Modulation with intensity

Consumption_{modulated} (kWh/year/m²IT) =

Consumption_{reference} x [(Utilization rate / Utilization rate_{reference})
x (Power density / Power density_{reference})]

Modulation equivalent to modulation with change in the volume of data processed

Conclusion

Limitations:

- More tests needed with real data center values
- Average reference values to update?

Opportunities:

- DRAFT DRAF L With few non intrusive data from DC operators: set individual consumption limits or target
- Push for higher power density higher utilization rate, higher rack density in IT room and lower idle power

Open questions:

- Should we consider the type of data processed?
- Should we complicate the modulation formula?
- May we consider that formula for european regulation/delegated act or for labelling?

Liberté Égalité Fraternité

Direction Ville et Territoire Durables / Service Bâtiment

Bruno Lafitte: <u>bruno.lafitte@ademe.fr</u>

Responsabilities

4 categories of stakeholders in DC:

- The owner of the building
- The lessor
- The operator
- The owner of IT devices

DRAFT DRAFT If the operator (3) is separate from the lessee (most of the cases), the situation is equivalent to a classic delagation contract. First responsability is to the delegator, responsability of the delagatee is stated in the contract. For an example, a public service delagatee (private), operating a building (swimming pool, theatre ...) take the responsability for the owner of the building.

For colocation data centres, the owner of IT equipment (4) is considered as a lessee (suject functional entity). He is responsible of its own consumption. The operator (3) of the building charges the energy bill (ellectricity supply and cooling) to the owner of IT equipment.

To sum up, when the owner of the building (1) is operating the building but not the IT equipment wich belongs to several lessees, each lessee is responsible of its own consumption and should declare it based on the information given by the operator. The lessee should ensure that the operator of the building operates in an efficient way.

Typical cases

Configuration	col	Cloud service provider	
	Operator	Customer (lessee)	
1.The owner of the building	X (more often)		X
2. Lessor	x		X (service offer)
3. Operator of the building	x		x
4. Owner of IT		X	X

Data center classifications - availability

The Availability Class concept of EN 50600-1:2019 EN 50600-2 series

Availability and power dansity of (T) (W/m2) nominal power is often related

	Availability of overall set of facilities and infrastructures						
	Low	Medium	High	Very high			
	AVAILABILITY CLASS						
Infrastructure	1	2	3	4			
Power supply EN 50600-2-2	Single path to primary distribution equipment	Single path to primary distribution equipment	Multiple paths to primary distribution equipment	Multiple paths to primary distribution equipment			
	Single source	Redundant sources	Redundant sources	Multiple sources			
Power distribution EN 50600-2-2 and environmental control EN 50600-2-3	Single path	Single path with redundancy	Multiple paths - Concurrent repair/operate solution	Multiple paths - Fault tolerant except during maintenance			
Telecommunications cabling EN 50600-2-4	Single path - direct connections or fixed infrastructure with single access network connection	Single path - fixed infrastructure with multiple access network connections	Multiple paths - fixed infrastructure with diverse pathways with multiple access network connections	Multiple paths - fixed infrastructure with diverse pathways and redundant distribution zones and multiple access network connections			