Refurbishment strategy

Brussels Capital Region

Den Hague, March 2016

Aurore BRUNSON

Dept. Air, Climate and Energy
Brussels Environment

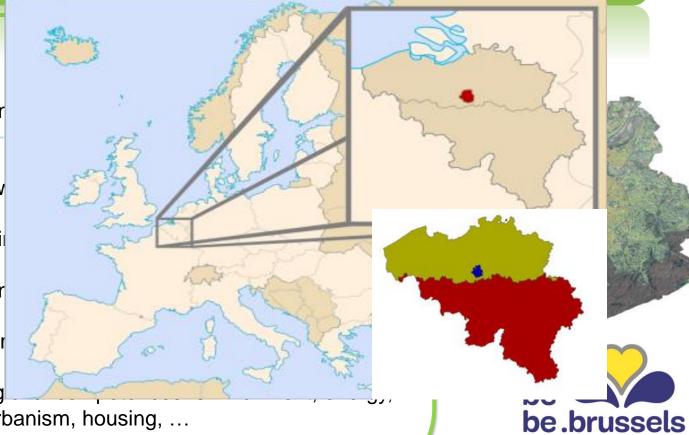
Energy Efficiency Directive (2012/27)

Article 4: Energy Emclency Directive (2012/27)

Member States shall establish a long-term strategy for mobilising investment in the renovation of the national stock of residential and commercial buildings, both public and private. This strategy shall encompass:

a) an avaryiou of the national building stock based as appropriate on statistical

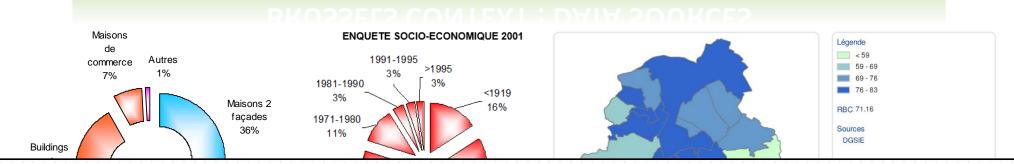
(b) identification of cost-effective approaches to renovations relevant to the building type and climatic zone;


- (c) policies and measures to stimulate cost-effective deep renovations of buildings, including staged deep renovations;
- (d) a forward-looking perspective to guide investment decisions of individuals, the construction industry and financial institutions;
 - (e) an evidence-based estimate of expected energy savings and wider benefits.

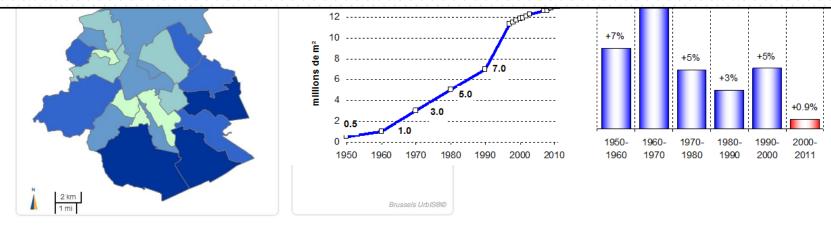
BRUSSELS SITUATION

- 162 km²
- 1,1 millior expected +
- 630.000 v
- Old buildi
- 75% of er
- Very low r

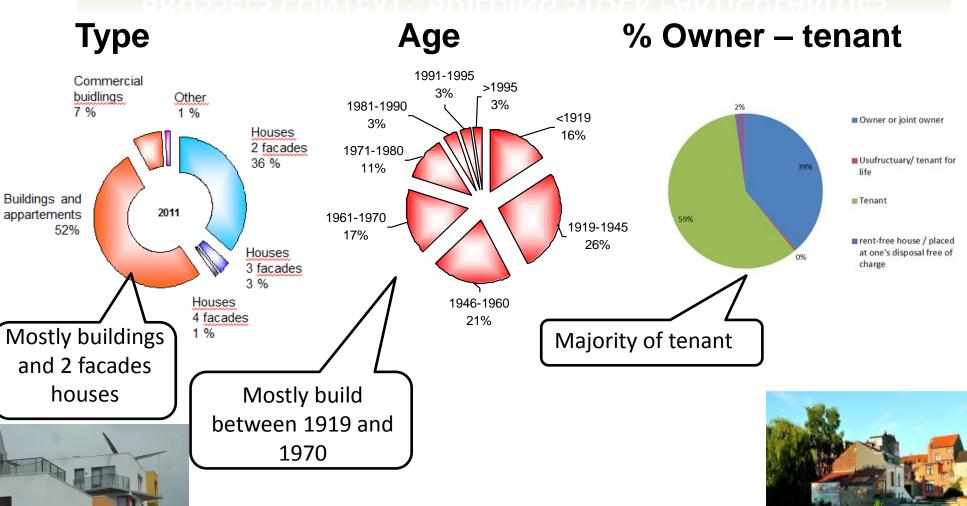
 Large reg mobility, urbanism, housing, ...



BRUSSELS CONTEXT: DATA SOURCES


Data sources:

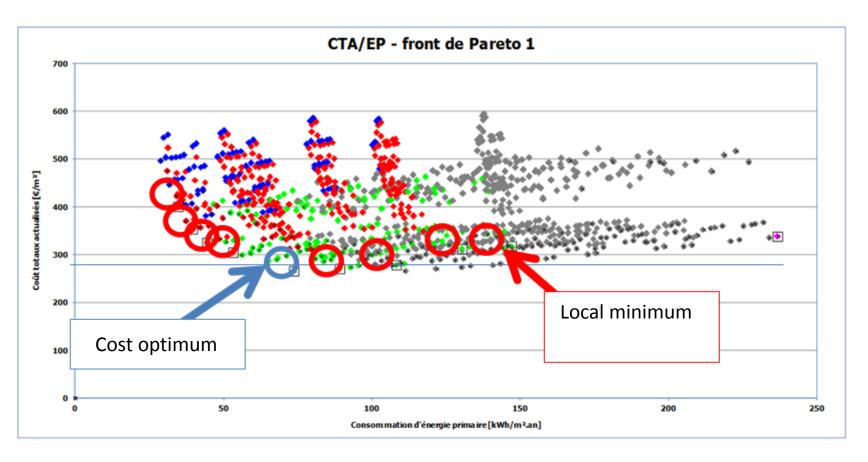
Brussels-Capital energy balance (2012)


Neighbourhoods monitoring: www.monitoringdesquartiers.irisnet.be

National statistics : http://statbel.fgov.be

« Energy Consumption Survey for Belgian households » (2011)

BRUSSELS CONTEXT: BUILDING STOCK PARTICULARITIES

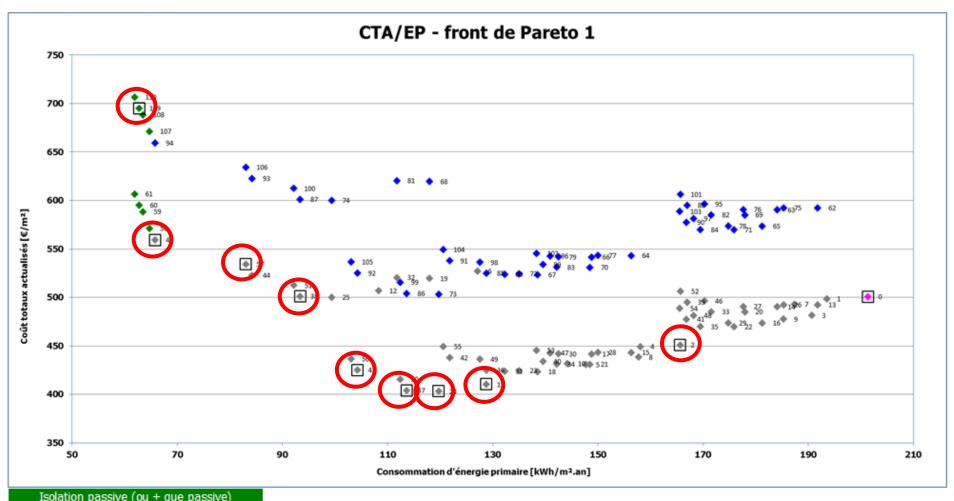


- relevant to the building type and climatic zone
- Based on the « <u>Cost-optimum</u> » study required in the framework of the EPBD directive

- Cost effective approaches for refurbishment = architectural and technical solution which provide the most important primary energy savings for a minor global cost
- Global cost = global cost of an installation in terms of net value for a determined time
 - 30 years for residential and public building (dwellings)
 - 20 years for non-residential (offices) and commercial buildings

relevant to the building type and climatic zone

Types of buildings studied: houses, apartments and offices Analyse of architectural and technical alternatives

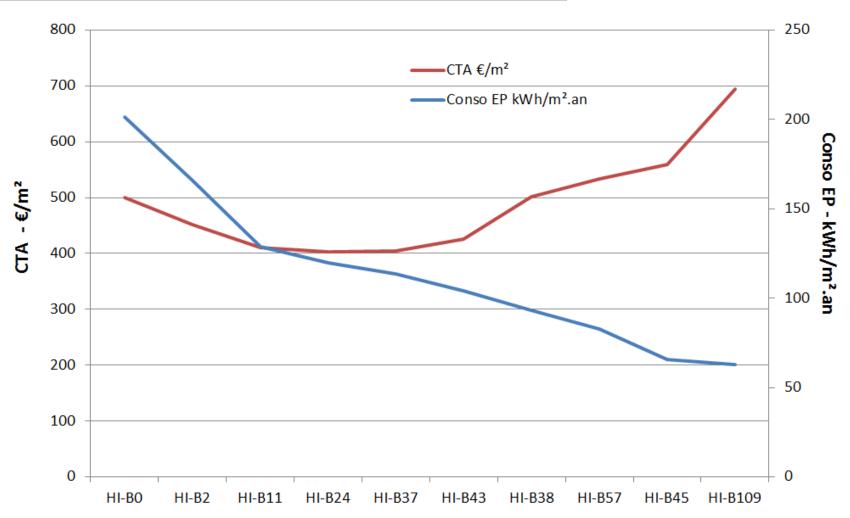

relevant to the building type and climatic zone

Evaluation of primary energy consumption (and potential savings)	Dwellings (2 facades houses + apartments)	Offices
Heating	X	X
Sanitary hot water	X	
Cooling	X	X
Auxiliary	X	X
Lighting		X

Individual houses – architectural variant

Hab. ind. Existant 1	HI-B	var 1	var 2	var 3	var 4
Utoit	0.6	0.40	0.24	0.12	0.08
Umur	2.2	0.60	0.24	0.12	80.0
Rsol	0.31	1.67	4.17	8.33	12.50
Uw	3	1.80	0.85		
Ug	2.8	1.10	0.6		
v50	12	6.07	2.02	1.21	
n50	5.93	3.00	1.00	0.60	
inertie	mi-lourd	-			
surface vitrée	50%	-			
g	76%	60%			
prot sol amov	non	protection solaire ext manuelle			

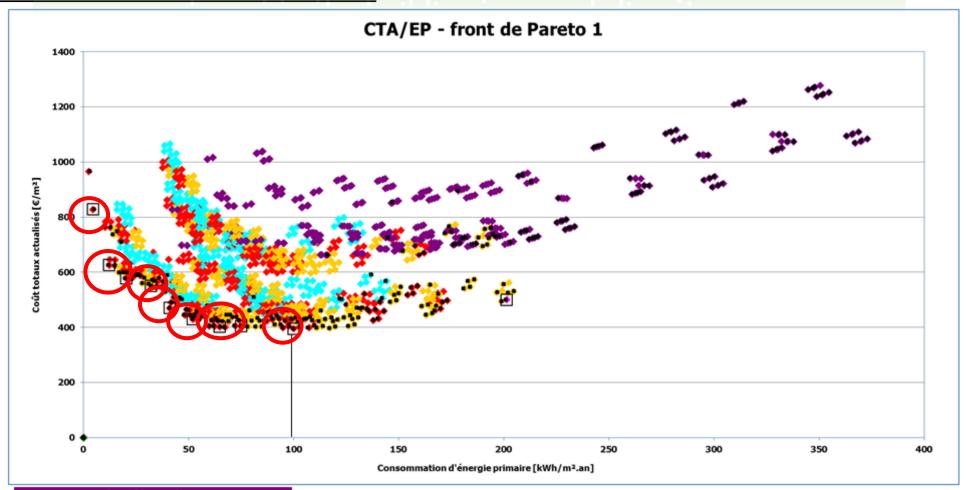
Individual houses – selection of 10 architectural variant


Isolation passive (ou + que passive)
Présence d'une protection solaire
Tout autre cas

(isolation non passive et pas de protection solaire)

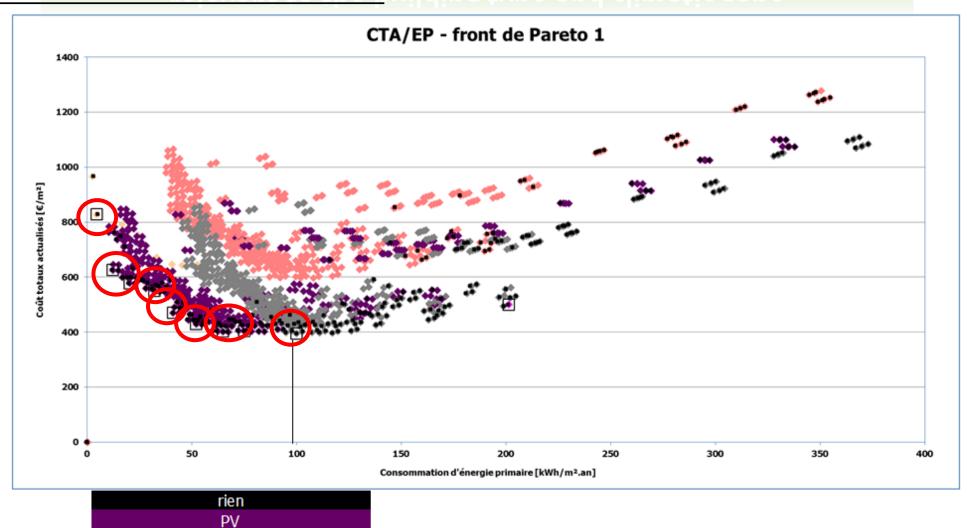
<u>Individual houses – selection of 10 architectural variants</u>

Référence point	Conso	EP	СТА	économie EP	К	E	Surinvest	Utoit	Umur	Rsol	Uw fen	g	n50	protec	reduction
recreated point	Wh/m	².an	€/m²	kWh/m².an	-	-	€/m²	W/m²K	W/m²K	m²K/W	W/m²K	%	1/h	solaire	Fac*
HI-BO	201)	501	0%	97	137	0,00	0,60	2,20	0,31	3,00	0,76	5,9	non	non
HI-B2	100		451	18%	76	113	28,12	0,60	0,60	0,31	3,00	0,76	5,9	non	non
HI-B11	129		410	36%	54	88	68,28	0,24	0,24	4,17	3,00	0,76	5,9	non	non
HI-B24	120		403	41%	54	82	80,86	0,24	0,24	4,17	3,00	0,76	3,0	non	non
HI-B37	114		404	44%	54	78	94,99	0,24	0,24	4,17	3,00	0,76	1,0	non	non
HI-B43	104		425	48%	48	71	136,49	0,12	0,12	8,33	3,00	0,76	1,0	non	non
HI-B38	93		501	54%	39	64	236,26	0,24	0,24	4,17	1,80	0,60	1,0	non	non
HI-B57	83		534	59%	33	57	291,89	0,12	0,12	8,33	1,80	0,60	0,6	non	non
HI-B45	***************************************		559	67%	20	45	354,72	0,12	0,12	8,33	0,85	0,60	1,0	non	non
HI-B109	63		695	69%	19	43	468,62	0,08	0,08	8,33	0,85	0,60	0,6	oui	non
				·											


<u>Individual houses – selection of 10 architectural variants</u>

Individual houses – technical variant

Hab. ind. Existant	HI-X0	var 1	var 2	var 3	var 4	var 5
Ventilation	VH	VH1	VH2	VH5		
chauffage - Production	HP	HP1	HP3	HP8	HP10	HP12
chauffage - Emission	HE	HE1	HE3			•••••
chauffage - Régulation	HR	HR2				
chauffage - Distribution	HD	HD1	HD2			
ECS - Production	WP	_	AUFFAGE	•••••••••••••••••••••••••••••••••••••••		
ECS - Distribution	WD	Χ				
Energie renouvelable	SER	SER1	SER2	SER3	SER5	


Individual houses – technical variant angul (Abe and chuaric sone

chauffage élect Chaudière gaz condens murale Chaudière HR PAC air/eau

Individual houses – technical variant αμαμα τλόε αυα σμυσμό χουε

CES PV+CES

PV = Panneaux photovoltaïques ; CES = Chauffe-Eau Solaire

CES kWh/an

0

0

C

C

C

D + récupérateur chaleur indement EN 308: 80% + SFP 3

rendement EN 308: 80% + SFP 3

D + récupérateur chaleur

rendement EN 308: 80% + SFP 3 D + récupérateur chaleur rendement EN 308: 80% + SFP 3 kWh/an

0

2430

2430

2430

Individual houses – technical variant angula (ybe and chinatic zone)

Référence point	BNC kWh/m²	ENR kWh/m²	Conso EP kWh/m².an	CTA €/m
HI-B0-1	110.80	-	201.34	500.6
HI-B24-34	55.59	-	99.98	395.5
HI-B11-64	61.70	-	74.92	404.3
HI-B24-94	55.59	-	64.86	401.6
HI-B43-94	45.13	-	52.11	429.4
HI-B43-96	30.18	-	41.03	469.8
HI-B38-96	22.95	-	32.21	550.3
HI-B45-94	19.09	-	20.35	578.3
HI-B45-96	6.64	-	12.32	625.3
HI-B45-181	6.64	-	4.50	827.6

Référence point	BNC kWh/m²	BNR kWh/m²	Conso EP kWh/m².an	CTA €/m²	économie EP kWh/m².an	ECS cribution is boude
HII-BO-1	110.80	-	201.34	500.65	0%	s boucle
HI-B24-34	55.59	-	99.98	395.56	50%	s boude
HI-B11-64	61.70	-	74.92	404.33	63%	s boude
HI-B24-94	55.59	-	64.86	401.68	68%	s boude
HII-B43-94	45.13	-	52.11	429.47	74%	
HII-B43-96	30.18	-	41.03	469.85	80%	
HII-B38-96	22.95	-	32.21	550.36	84%	
HII-B45-94	19.09	-	20.35	578.36	90%	
HII-B45-96	6.64	-	12.32	625.39	94%	
HI-B45-181	6.64	-	4.50	827.69	98%	

Individual houses (excepted PV) - Optimality range

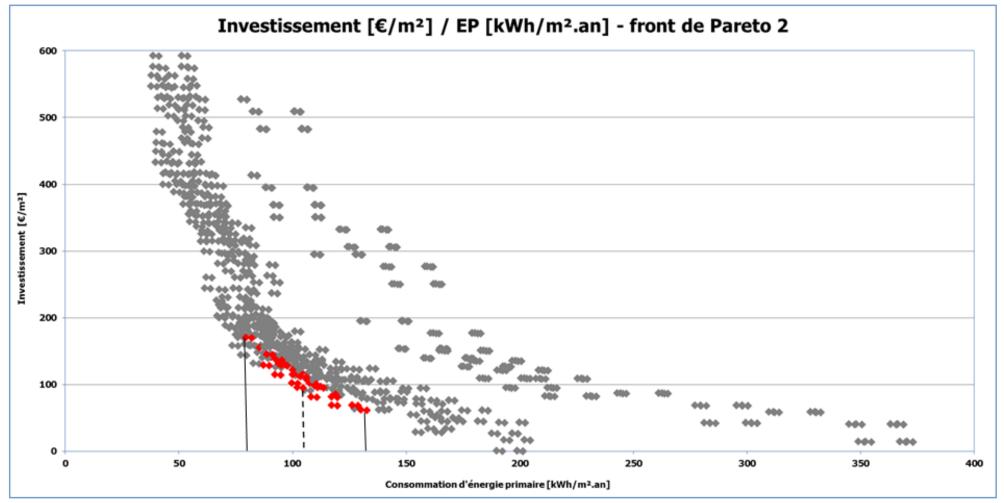


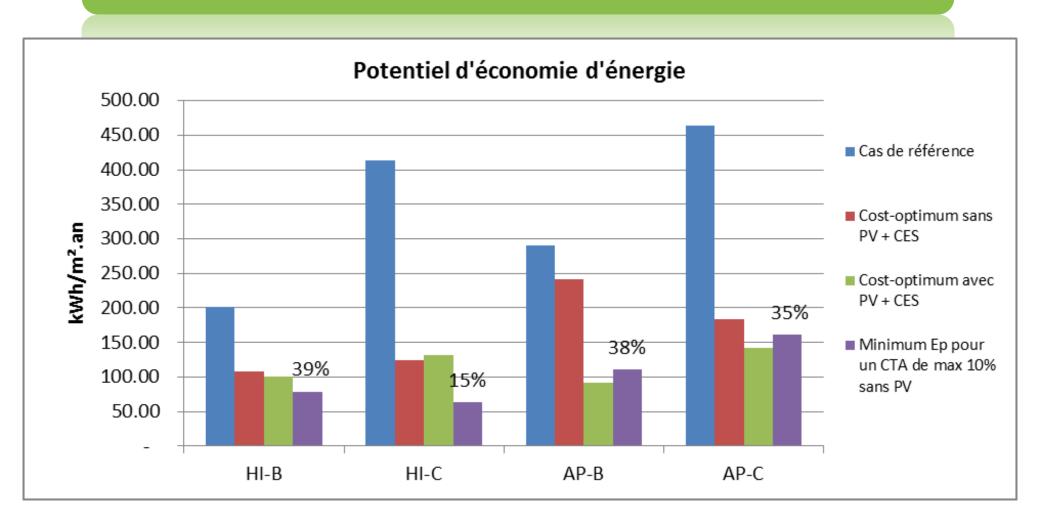
Figure 29 : Front de Pareto Investissement/EP – variantes architecturales et techniques sans énergie solaire - maison individuelle HI-B

relevant to the building type and climatic zone

General conclusions

- It is always possible to decrease the primary energy consumption thanks to energy efficiency measures
- The biggest issues regarding these measures is the initial investment
- For a same energy efficiency, different combination are possible with different cost

 it is important to evaluate not the individual measure but the combination of them


General conclusions: architectural measures

- Glazing optimisation is an important measure by reducing the glazing surface
 - → Decrease of annual costs
 - → Opaque surface is cheaper than glazing surface BUT decrease of natural lighting in the building
- Insulation is expensive but really interesting for energy savings
- Airtightness enhancement allows important savings with a light global cost
- Too high global cost for :
 - Solar protection
 - Triple glazing

General conclusions: technical measures

- Individual houses:
 - Heating production by gas condensing boiler, radiators and variable speed circulators are cost-optimal technical solutions
 - A **constant flow ventilation** (C) is included in cost-optimum cases. The double flow ventilation (D) is not cost-optimal in dwellings but stay an economic and energetic interesting measure
- Conclusions are quite the same for collective dwellings, except:
 - Above 20 apartments in a building, a centralised heating production is preferable;
 - Photovoltaic solution are always in the cost-optimum solution

Potential energy savings

BRUSSELS POLICY FOR HIGH ENERGY PERFORMANCE BUILDINGS

LICY FOR HIGH ENERGY PERFORMANCE BUILDINGS

Brussels objective: -30% GHG in 2025

Improve Knowledge & know-how

Stimulate DEMAND

Improve SUPPLY

CONCLUSIONS

The development of the refurbishment strategy is still running and will be updated for begin 2017 as requested by the EED Directive

THANK YOU FOR YOUR ATTENTION!

THANK YOU FOR YOUR ATTENTION :

Aurore BRUNSON

abrunson@environnement.irisnet.be

DEPT. OF AIR, ENERGY AND CLIMATE, ENERGY PLANNING