Industrial waste heat applications with High-Temperature Heat Pumps

Working Group 6.3: Waste heat utilisation in DHC Session 2: Industrial waste heat applications

Reuven Paitazoglou Berlin, 27.03.2025

Industrial waste heat applications with High-Temperature Heat Pumps

Working Group 6.3: Waste heat utilisation in DHC Session 2: Industrial waste heat applications

Reuven Paitazoglou Berlin, 27.03.2025

Agenda

- Fraunhofer IEG
- Industrial Dercabonization
- Classification Heat Pump Technologies
- HTHP market availability and online database

Fraunhofer

IEG

- Research projects
- Summary

Fraunhofer-Gesellschaft at a glance

Application-oriented research for the direct benefit of the economy and society

Targets

- Affordable health care
- Digitalised value chain
- Security and resilient society

Strategic research fields

- Bioeconomy
- Next Generation Computing
- Digital health care
- Artifcial intelligence
- Quantum technologies
- Bessource efficiency & climate technologies

30.000 employees in 76 Fraunhofer institutes

Hydrogen technologies

Completed energy transition

Holistic circular economy

Lead markets

- Aerospace industry

Research Institution for Energy Infrastructures and Geotechnologies IEG Key Facts and Figures

Fraunhofer IEG – research areas at a glance

"We design the climate-neutral energy systems of the future"

- Integrated energy infrastructures
- Transmission and distribution networks
- Integrated district supply (Open District Hub)
- Hydrogen infrastructures (grids and storage)
- System transformation and technology transfer
- Exploration and exploitation of georesources
- Geothermal energy, shallow to deep geothermal systems
- Geotechnologies, drilling techniques and methods
- Storage for materials and heat, post-mining utilisation
- Carbon Capture & Storage/Utilization (**CCS/CCU**)
- Development of thermal energy systems that work grid-balancing
- 4th and 5th generation heating/cooling networks
- Surface storage for energy and integration of sector-coupled energy systems
- Efficient redesign of chemical production processes and carbon capture
- Control, automation & operational management of energy systems
- Decentralised, smart and digital grids and systems
- Large-scale demonstrators / field scale laboratories

Industrial Decarbonization

Upgrading of waste heat

Industrial energy landscape

- ~ 75% Heat Today mainly from fossils
- ~25% Electricity today 50% from fossils

37% of the process heat required is **below 200°C** (730 TWh/year)

Available waste heat between 40-100°C is estimated in 220 TWh

Upgrading waste heat offers challenging but big potential for decarbonization of process heat demand

Industrial process heat demand and waste heat analysis²

 [1] de Boer, R., Marina, A., Zühlsdorf, B., Arpagaus, C., Bantle, M., Wilk, V., Imegaard, B., Corberán, J., & Benson, J. Strengthening Industrial Heat Pump nnovation: Decarbonizing Industrial Heat, 2020.
 [2] A. Marina, S. Spoelstra, H.A. Zondag, A.K. Wemmers, An estimation of the European industrial heat pump market potential, Renewable and Sustainable Energy Reviews Volume 139, 2021.

Industrial Decarbonization

Upgrading of waste heat

- Main energy demand: Electricity
- Efficiency values COP: 1...10 (~COP=3)
- Established technology with high TRL
- Various compressor types (screw, scroll, piston, turbo)
- Synthetic vs. Natural refrigerants
- Many technology providers

[3] Cordin Arpagaus, Hochtemperatur-Wärmepumpen, Marktübersicht, Stand der Technik und Anwendungspotentiale, 2019.

Source: HeatPAC Model (3MW) by Johnson Controls

Heat Pumps

Industrial Decarbonization

Upgrading of waste heat

- Main energy demand: Electricity
- Efficiency values COP: 1...10 (~COP=3)
- Established technology with high TRL
- Various compressor types (screw, scroll, piston, turbo)
- Synthetic vs. Natural refrigerants
- Many technology providers

 P_{el} Electricity

 \dot{Q}_N Heat flow

- Main energy demand: High-Temperature Heat
- Efficiency values AHP~1.75 AHT ~0,5
- Established technology with high TRL
- Working pairs: $H_20/LiBr$ and NH_3/H_20
- ,Niche' applications

Closed systems Open systems Compresion Heat Pumps Mechanical Vapour Recompression (MVR) Sorption systems Thermocompressor

Source: AHT (500kW) by W. Baelz & Sohn GmbH & Co

[3] Cordin Arpagaus, Hochtemperatur-Wärmepumpen, Marktübersicht, Stand der Technik und Anwendungspotentiale, 2019.

Classification of Heat Pump Technologies³

Industrial Decarbonization

Upgrading of waste heat

- Main energy demand: Electricity
- Efficiency values COP: 2...14
- Closed loops possible
- Established technology with medium/high TRL
- Mainly water/steam based
- Few technology providers

[3] Cordin Arpagaus, Hochtemperatur-Wärmepumpen, Marktübersicht, Stand der Technik und Anwendungspotentiale, 2019.

Source: Spilling Project Partner GmbH & Co.KG

 p_N pressure

Industrial Decarbonization

Upgrading of waste heat

Mechanical Vapour Recompression (MVR)

- Main energy demand: Electricity
- Efficiency values COP: 2...14
- Closed loops possible
- Established technology with medium/high TRL
- Mainly water/steam based
- Few technology providers

 P_{el} Electricity

 \dot{O}_{N} Heat flow

- Main energy demand: High-Temperature/Pressure Steam
- Pressure ratio⁴ 1.5-10
- Low maintenance / high operational safety
- Working media: water, pressurized gases/air
- Low specific investments
- Nozzle adjustments allow part load

Source: Körting Hannover GmbH

Market overview⁵ HTHP

Availability of large-scale heat pumps

- Large-scale Heat Pumps up to 70MW available
- Few manufacturers with supply temperatures >120°C
- HTHP >150°C regarded mainly as prototypes

Identification of development needs:

- Increase in the supply temperature
- More industrial implementation / projects
- Standardization and "rules of thumb" for use cases

Market overview⁵ HTHP

Availability of large-scale heat pumps

- Large-scale Heat Pumps up to 70MW available
- Few manufacturers with supply temperatures >120°C
- HTHP >150°C regarded mainly as prototypes

Identification of development needs:

- Increase in the supply temperature
- More industrial implementation / projects
- Standardization and "rules of thumb" for use cases

Information portal for Large-scale Heat Pumps

Database for planned/operating projects in Germany

NEW RELEASE: https://grosswaermepumpen-info.de/

Large-scale heat pumps with a thermal **output \geq 500 kW_{th}**

Currently

- More than 100 planned and operating projects recorded in Germany
- Online research and inquiries with operators, municipal utilities

Recorded data

Project assignment	
•Project name •Location	
General information	
Project participantsCommissioning (status, year)	
Heat source	
•Type •Temperature	
Heat sink	
Type (district heating, industrial application)Temperature heat pump sideTemperature district heating	

Technical data
 manufacturer make refrigerant Compressor technology Thermal output, electrical power COP, SEPR Operating hours, heat quantity
Complementary systems
Heat StorageOther heat generators
Economic data
Investment volumeSubsidy

FernWP project

District and process heat supply by heat pumps as a replacement for coal combustion

Main tasks

- Analysis of economic barriers and further development of economic framework conditions
- Identification and assessment of LT-sources and DH network specifics
- Further development of thermodynamic cycles for Heat Pumps
- COP-Optimization in laboratory environment
- Scale-up laboratory Heat Pump prototype to a pilot plant
- Operation of pilot plant in a hybrid concept (HP+CHP)
- Assessment of process heat supply using large-scale heat pumps

FernWP Addressing the technical and economic barriers that currently still impede the widespread use of largescale heat pumps in DH systems and for covering the process heat demand

Duration: 10.2021 – 09.2025 (48M)

Project budget: 4,5M€

Fraunhofer (100%): 3,5€

7 partners

Public

🗾 Fraunhofer

FernWP project

District and process heat supply by heat pumps as a replacement for coal combustion

Fraunhofer

[7] Paitazoglou et al, Analysis of the heat sources for the use of large heat pumps in heating networks ', https://publica.fraunhofer.de/handle/publica/470511 (2024)

Fraunhofer

FernWP

Addressing the technical and economic barriers that currently still impede the widespread use of largescale heat pumps in DH systems and for covering the process heat demand

GESMEX

Johnson 🖇 Controls

Duration: 10.2021 – 09.2025 (48M)

🗾 Fraunhofer

Stadtwerke

Project budget: 4,5M€

Fraunhofer (100%): 3,5€

7 partners

🖉 Fraunhofer IFG

FernWP project

District and process heat supply by heat pumps as a replacement for coal combustion

Fraunhofer

[5] Billerbeck et al, ,Analysis of current economic bariers and further development of the economic framework for large-scale heat pumps', https://doi.org/10.24406/publica-1063

🗾 Fraunhofer

hofer

Fraunhofer AGF

Stadtwerke

GESMEX

Steam Screw project

Heat pumps for process heat applications

Water-based High temperature heat pump

Steam Screw project

Heat pumps for process heat applications

Flexible Design (Test bench / heat pump)

- Operation in combination planned within project scope
- **Further outlook**: Operation of test bench and / or heat pump

Modular Configuration of SteamScrew heat pump

- Test of multiple compressor generations within project scope
- Further outlook: Test of different technologies
 - (e.g. compressor type, evaporator type)

PUSH2HEA project

forward

enpa

Decarbonization of industrial heat supply

the market potential

business models of waste heat valorisation by fullscale demonstration of next-gen heat upgrade technologies in various industrial contexts.

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them.

the European Union

Push2Heat

PUSH2HEAT

Pushing forward the market potential and business models of waste heat valorisation by full-scale demonstration of next-gen heat upgrade technologies in various industrial contexts

Duration: 10.2022 – 09.2026 (48M)

Project budget: 9.739.703€

Fraunhofer (100%): 598.750€

18 partners from 6 different countries

4 demo sites for heat upgrade

- Compression HP
- HP + MVR
- Absorption Heat Transformer
- Thermochemical HP (Test site)

Felix Schoeller Group Best Performing Papers, Worldwide,

PUSH2HEAT project

Decarbonization of industrial heat supply

Main objectives

- **Optimization** of four heat upgrade technologies
- Pushing forward the market potential
- New business models and actions towards technologies market deployment
- Demonstration of 4 full-scale pilots plants in different industrial applications
- Waste heat 40-90°C
- Heat supply 100-160°C
- System size 0,5 3MW

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them.

the European Union

Push2Heat

PUSH2HEAT

Pushing forward the market potential and business models of waste heat valorisation by full-scale demonstration of next-gen heat upgrade technologies in various industrial contexts

Duration: 10.2022 – 09.2026 (48M)

Project budget: 9.739.703€

Fraunhofer (100%): 598.750€

18 partners from 6 different countries

4 demo sites for heat upgrade

- Compression HP
- HP + MVR
- Absorption Heat Transformer
- Thermochemical HP (Test site)

PUSH2HEAT project

Decarbonization of industrial heat supply

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them

the European Union

Push2Heat

PUSH2HEAT

Pushing forward the market potential and business models of waste heat valorisation by full-scale demonstration of next-gen heat upgrade technologies in various industrial contexts

Duration: 10.2022 – 09.2026 (48M)

Project budget: 9.739.703€

Fraunhofer (100%): 598.750€

18 partners from 6 different countries

4 demo sites for heat upgrade

- Compression HP
- -HP + MVR
- Absorption Heat Transformer
- Thermochemical HP (Test site)

PUSH2HEAT project

Decarbonization industrial heat supply

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them

Push2Heat

Demo 1: Felix Schoeller

Sector: Paper Industry Production: 100.000 t/a

Technology: 2-stage HTHP

Demo 2 at Cartiere di Guarcino

Sector: Paper Industry Production: 50.000 t/a

Technology: Absorption Heat Transformer

🖉 Fraunhofer IFG

Heat Upgrade System based on 2stage HTHP

Heat pumps for process heat applications

Economical aspect of heat pumps

- Barriers for the usage of industrial heat pumps
 - Needed Temperatures are too high
 - High manufacturing costs -> Higher <u>cap</u>ital <u>expenditures</u> (short CAPEX)
 - Long payback times, gas often the cheaper option
 - <u>op</u>erational <u>expenditures</u> (short OPEX) dependent on the energy prices

	Cost of kWh_electricity [€]	Cost of kWh_gas [€]	Ratio [-]
Sweden	0.13	0.13	1.04
Austria	0.17	0.07	2.42
U	0.20	0.07	2.94
Sermany	0.18	0.05	3.74

[Source: eurostat2022, non-households]

- 1. Main barriers for market deployment
- 2. High electricity price and/or uncertainity in the energy market
- 3. High CAPEX
- 4. Amortisation too long for decision makers
- 5. Fex implemented project in an industrial context
- 6. Lack of knowledge over HP availability and integration potential
- 7. Temperature levels not matching / heat sources not available

Heat pumps for process heat applications

Economical aspect of heat pumps

OPEX:

- Barriers for the usage of industrial heat pumps
 - Needed Temperatures are too high
 - High manufacturing costs -> Higher <u>cap</u>ital <u>expenditures</u> (short CAPEX)
 - Long payback times, gas often the cheaper option
 - <u>op</u>erational <u>expenditures</u> (short OPEX) dependent on the energy prices

	Cost of kWh_electricity [€]	Cost of kWh_gas [€]	Ratio [-]
Sweden	0.13	0.13	1.04
Austria	0.17	0.07	2.42
U	0.20	0.07	2.94
Germany	0.18	0.05	3.74

[Source: eurostat2022, non-households]

Summary

High potential for waste heat upgrade with High-Temperature Heat Pumps (HTHP)

Decarbonization of process heat up (<200°C)

R&D needed for reaching high supply temperatures (>150°C), MVR Systems, operational flexibility

Fraunhofer IEG on the front field regarding

- Development of HTHPs (process simulation, compressors, refrigerant selection)
- Deployment, implementation, integration and monitoring
- Technoeconomic analysis

[1] de Boer, R., Marina, A., Zühlsdorf, B., Arpagaus, C., Bantle, M., Wilk, V., Imegaard, B., Corberán, J., & Benson, J. Strengthening Industrial Heat Pump novation: Decarbonizing Industrial Heat, 2020.
 [2] A. Marina, S. Spoelstra, H.A. Zondag, A.K. Wemmers, An estimation of the European industrial heat pump market potential, Renewable and Sustainable Energy Reviews, Volume 139, 2021.
 [3] Cordin Arpagaus, Hochtemperatur-Wärmepumpen, Marktübersicht, Stand der Technik und Anwendungspotentiale, 2019.
 [5] Agora Energiewende, Fraunhofer IEG (2023): The roll-out of large-scale heat pumps in Germany. Strategies for the market ramp-up in district heating and industry.
 [6] Billerbeck et al, Analysis of current economic bariers and further development of the economic framework for large-scale heat pumps¹, <u>https://doi.org/10.24406/publica-1063</u> (2023)
 [7] Paitazoglou et al, Analysis of the heat sources for the use of large heat pumps in heating networks ¹, <u>https://publica.fraunhofer.de/handle/publica/470511</u> (2024)

Thank you for the attention

Dipl.-Ing. Reuven Paitazoglou

Competence Center High-Temperature Heat Pumps Institution for Energy Infrastructures and Geotechnologies Gulbener Str. 23 | 03046 Cottbus | Germany T +49 355 355 40152 <u>reuven.paitazoglou@ieg.fraunhofer.de</u> <u>www.ieg.fraunhofer.de</u>

